首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
In oviparous species like birds, eggs provide the direct environment in which embryos are developing. Mothers may adjust different egg components in different ways in reaction to environmental cues either to adjust offspring development or because of constraints. In this study, we investigated the effects of food quality and quantity before and during egg laying on three different aspects of egg quality: macro‐nutrients (egg and yolk mass), androgens (testosterone and androstenedione), and thyroid hormones (3,5,3′‐triiodothyronine, T3 and l ‐thyroxine, T4), using the rock pigeon (Columba livia). As expected, egg and yolk mass were significantly reduced for the eggs laid under the poor‐food condition, indicating a maternal trade‐off between offspring and self in allocating important resources. We did not find any significant change in yolk testosterone or their within‐clutch pattern over the laying sequence. This is consistent with the fact that, in contrast with nutrients, these hormones are not costly to produce, but does not support the hypothesis that they play a role in adjusting brood size to food conditions. In contrast, we found that T3 levels were higher in the egg yolks under the poor‐food condition whereas the total T4 content was lower. This change could be related to the fact that iodine, the critical constituent of thyroid hormones, might be a limiting factor in the production of this hormone. Given the knowledge that food restriction usually lead to reduction of circulating T3 levels, our results suggested that avian mothers can independently regulate its concentrations in their eggs from their own circulation. The study demonstrates that environmentally induced maternal effects via the egg can be a result of a combination of constrained resources and unconstrained signals and that thyroid hormones might be an interesting case of both. Therefore, this hormone and the interplay of different maternal effects on the offspring phenotype deserve much more attention.  相似文献   

2.
Ketamine, an antagonist of N‐methyl‐d ‐aspartate receptors, has produced rapid antidepressant effects in patients with depression, as well as in animal models. However, the extent and duration of the antidepressant effect over longer periods of time has not been considered. This study evaluated the effects of single dose of ketamine on behavior and oxidative stress, which is related to depression, in the brains of adult rats subjected to maternal deprivation. Deprived and nondeprived Wistar rats were divided into four groups nondeprived + saline; nondeprived + S‐ketamine (15 mg/kg); deprived + saline; deprived + S‐ketamine (15 mg/kg). A single dose of ketamine or saline was administrated during the adult phase, and 14 days later depressive‐like behavior was assessed. In addition, lipid damage, protein damage, and antioxidant enzyme activities were evaluated in the rat brain. Maternal deprivation induces a depressive‐like behavior, as verified by an increase in immobility and anhedonic behavior. However, a single dose of ketamine was able to reverse these alterations, showing long‐term antidepressant effects. The brains of maternally deprived rats had an increase in protein oxidative damage and lipid peroxidation, but administration of a single dose of ketamine reversed this damage. The activities of antioxidant enzymes superoxide dismutase and catalase were reduced in the deprived rat brains. However, ketamine was also able to reverse these changes. In conclusion, these findings indicate that a single dose of ketamine is able to induce long‐term antidepressant effects and protect against neural damage caused by oxidative stress in adulthood rats following maternal deprivation. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1268–1281, 2015  相似文献   

3.
Abstract When costs and benefits of raising sons and daughters differ between environments, parents may be selected to modify their investment into male and female offspring. In two recently colonized environments, breeding female house finches (Carpodacus mexicanus) modified the sex and growth of their offspring in relation to the order in which eggs were laid in a clutch. Here we show that, in both populations, these maternal effects strongly biased frequency distribution of tarsus size of fully grown males and females and ultimately produced population divergence in this trait. Although in each population, male and female offspring show a wide range of growth patterns, maternal modifications of sex‐ratio in relation to egg‐laying order resulted in under‐representation of the morphologies that were selected against and over‐representation of morphologies that were favoured by the local selection on juveniles. The result of these maternal adjustments was fast phenotypic change in sexual size dimorphism within and between populations. Maternal manipulations of offspring morphologies may be especially important at the initial stages of population establishment in the novel environments and may have facilitated recent colonization of much of North America by the house finch.  相似文献   

4.
Enzymatic and non‐enzymatic antioxidants play important roles in the tolerance of abiotic stress. To increase the resistance of seeds to oxidative stress, At2S3 promoter from Arabidopsis was used to achieve overexpression of the antioxidants in a seed‐specific manner. This promoter was shown to be capable of driving the target gene to have a high level of expression in seed‐related organs, including siliques, mature seeds, and early seedlings, thus making its molecular farming applications in plants possible. Subsequently, genes encoding Mn‐superoxide dismutase (MSD1), catalase (CAT1), and homogentisate phytyltransferase (HPT1, responsible for the first committed reaction in the tocopherol biosynthesis pathway) were overexpressed in Arabidopsis under the control of the At2S3 promoter. Double overexpressers co‐expressing two enzymes and triple overexpressers were produced by cross pollination. Mn‐SOD and total CAT activities, as well as γ‐tocopherol content, significantly increased in the corresponding overproduction lines. Moreover, single MSD1‐transgene, double, and triple overexpressers displayed remarkably enhanced oxidative stress tolerance compared to wild type during seed germination and early seedling growth. Interestingly, an increase in the total CAT activity was also observed in the single MSD1‐transgenic lines as a result of MSD1 overexpression. Together, the combined increase in Mn‐SOD and CAT activities in seeds plays an essential role in the improvement of antioxidant capacity at early developmental stage in Arabidopsis.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号