首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Is hatching asynchrony beneficial for the brood?   总被引:1,自引:0,他引:1  
Many hypotheses have been proposed to explain why female birdsstart to incubate before clutch completion (IBCC). Some of thosesuggest that the resulting hatching asynchrony (HA) is adaptivebecause it increases the size hierarchy among offspring andin turn reduces nestling competition and energy demands duringthe peak feeding period. Others argue that IBCC is a good strategyin unpredictable environments. When food conditions deteriorate,the large size hierarchy quickly results in the death of thelast hatched nestlings, allowing the remaining ones to surviveand fledge in better condition. In comparison, under favorableconditions, all nestlings can fledge independent of hatchingorder. To test these hypotheses, we performed a brood size manipulationexperiment (as a simulation of good and bad years) in collaredflycatchers Ficedula albicollis and examined the effect of sizehierarchy on offspring and brood performance. We found thatchicks with an initial size disadvantage experienced reducedbody mass growth and had shorter feathers at fledging in bothreduced and enlarged broods. In enlarged broods, they also fledgedwith a smaller skeletal size. Although broods on average orparents could possibly still benefit from HA when food is scarce,this was not seen in the current study. Parental survival wasnot related to the size hierarchy in the broods, and the averagebody mass growth of the nestlings was slower in broods witha high initial size variance. We therefore conclude that HAand the resulting size hierarchy are probably detrimental forthe growth of nestlings in both good and bad years, at leastin species where nestling mortality does not occur early inlife.  相似文献   

2.
3.
4.
    
Ecological and medical researchers are investing great effort to determine the role of Maternally‐Derived Stress (MDS) as an inducer of phenotypic plasticity in offspring. Many researchers have interpreted phenotypic responses as unavoidable negative outcomes (e.g., small birth weight, high anxiety); however, a biased underestimate of the adaptive potential of MDS‐induced effects is possible if they are not viewed within an ecologically relevant or a life‐history optimization framework. We review the ecological and environmental drivers of MDS, how MDS signals are transferred to offspring, and what responses MDS induces. Results from four free‐living vertebrate systems reveals that although MDS induces seemingly negative investment trade‐offs in offspring, these phenotypic adjustments can be adaptive if they better match the offspring to future environments; however, responses can prove maladaptive if they unreliably predict (i.e., are mismatched to) future environments. Furthermore, MDS‐induced adjustments that may prove maladaptive for individual offspring can still prove adaptive to mothers by reducing current reproductive investment, and benefitting lifetime reproductive success. We suggest that to properly determine the adaptive potential of MDS, researchers must take a broader integrated life‐history perspective, appreciate both the immediate and longer term environmental context, and examine lifetime offspring and maternal fitness.  相似文献   

5.
6.
    
Maternal effects can influence offspring growth and development, and thus fitness. However, the physiological factors mediating these effects in nonhuman primates are not well understood. We investigated the impact of maternal effects on variation in three important components of the endocrine regulation of growth in male and female mandrills (Mandrillus sphinx), from birth to 9 years of age. Using a mixed longitudinal set (N = 252) of plasma samples, we measured concentrations of insulin‐like growth factor‐I (IGF‐I), growth hormone binding protein (GHBP), and free testosterone (free T). We evaluated the relationship of ontogenetic patterns of changes in hormone concentration to patterns of growth in body mass and body length, and determined that these endocrine factors play a significant role in growth of both young (infant and juvenile) and adolescent male mandrills, but only in growth of young female mandrills. We also use mixed models analysis to determine the relative contribution of the effects of maternal rank, parity, and age on variation in hormone and binding protein concentrations. Our results suggest that all of these maternal effects account for significant variation in hormone and binding protein concentrations in all male age groups. Of the maternal effects measured, maternal rank was the most frequently identified significant maternal effect on variation in hormone and binding protein concentrations. We suggest that these endocrine factors provide mechanisms that contribute to the maternal effects on offspring growth previously noted in this population. Am. J. Primatol. 74:890‐900, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
    
Certain predominant forms of mating and parental care systems are assumed in several model species among birds, but the opportunistic and apparently infrequent variations of “family structures” may often remain hidden due to methodological limitations with regard to genetic or behavioral observations. One of the intensively studied model species, the collared flycatcher (Ficedula albicollis), is usually characterized by social monogamy with polyterritorial, facultative social polygyny, and frequent extrapair mating and extrapair paternity. During a brood‐size manipulation experiment, we observed two females and a male delivering food at an enlarged brood. A combination of breeding phenology data (egg laying and hatching date), behavioral data (feeding rates) from video recordings at 10 days of nestling age, and microsatellite genotyping for maternity and paternity suggests a situation of an unrelated female helping a pair in chick rearing. Such observations highlight the relevance of using traditional techniques and genetic analyses together to assess the parental roles within a population, which becomes more important where individuals may dynamically switch from their main and presupposed roles according to the actual environmental conditions.  相似文献   

8.
Conditions experienced during early life can influence the development of an organism and several physiological traits, even in adulthood. An important factor is the level of oxidative stress experienced during early life. In birds, extra-genomic egg substances, such as the testosterone hormone, may exert a widespread influence over the offspring phenotype. Interestingly, testosterone can also upregulate the bioavailability of certain antioxidants but simultaneously increases the susceptibility to oxidative stress in adulthood. However, little is known about the effects of maternally derived yolk testosterone on oxidative stress in developing birds. Here, we investigated the role of yolk testosterone on oxidative stress of yellow-legged gull chicks during their early development by experimentally increasing yolk testosterone levels. Levels of antioxidants, reactive oxygen species and lipid oxidative damage were determined in plasma during nestlings'' growth. Our results revealed that, contrary to control chicks, birds hatched from testosterone-treated eggs did not show an increase in the levels of oxidative damage during postnatal development. Moreover, the same birds showed a transient increase in plasma antioxidant levels. Our results suggest that yolk testosterone may shape the oxidative stress-resistance phenotype of the chicks during early development owing to an increase in antioxidant defences and repair processes.  相似文献   

9.
  总被引:4,自引:0,他引:4  
Maternal effects are widespread and can have dramatic influences on evolutionary dynamics, but their genetic basis has been measured rarely in natural populations. We used cross-fostering techniques and a long-term study of a natural population of red squirrels, Tamiasciurus hudsonicus, to estimate both direct (heritability) and indirect (maternal) influences on the potential for evolution. Juvenile growth in both body mass and size had significant amounts of genetic variation (mass h(2) = 0.10; size h(2) = 0.33), but experienced large, heritable maternal effects. Growth in body mass also had a large positive covariance between direct and maternal genetic effects. The consideration of these indirect genetic effects revealed a greater than three-fold increase in the potential for evolution of growth in body mass (h(2)t = 0.36) relative to that predicted by heritability alone. Simple heritabilities, therefore, may severely underestimate or overestimate the potential for evolution in natural populations of animals.  相似文献   

10.
11.
    
Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high‐density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best‐order map contained 4215 markers, with a total distance of 3132 cM and a mean genetic distance between markers of 0.12 cM . Facilitated by the array being designed to include markers from most scaffolds, we obtained a second‐generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super‐scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5–2.0 event (6.6–7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cM /Mb and correlated closely with chromosome size, from 2 cM /Mb for chromosomes >100 Mb to >10 cM /Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cM was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes.  相似文献   

12.
The evolutionary importance of maternal effects is determined by the interplay of maternal adaptations and strategies, offspring susceptibility to these strategies, and the similarity of selection pressures between the two generations. Interaction among these components, especially in species where males and females differ in the costs and requirements of growth, limits inference about the evolution of maternal strategies from their expression in the offspring phenotype alone. As an alternative approach, we examine divergence in the proximate mechanisms underlying maternal effects across three house finch populations with contrasting patterns of sex allocation: an ancestral population that shows no sex-biased ovulation, and two recently established populations at the northern and southern boundaries of the species range that have opposite sequences of ovulation of male and female eggs. For each population, we examined how oocyte acquisition of hormones, carotenoids and vitamins was affected by oocyte growth and overlap with the same and opposite sexes. Our results suggest that sex-specific acquisition of maternal resources and sex determination of oocytes are linked in this system. We report that acquisition of testosterone by oocytes that become males was not related to growth duration, but instead covaried with temporal exposure to steroids and overlap with other male oocytes. In female oocytes, testosterone acquisition increased with the duration of growth and overlap with male oocytes, but decreased with overlap with female oocytes. By contrast, acquisition of carotenoids and vitamins was mostly determined by organism-wide partitioning among oocytes and oocyte-specific patterns of testosterone accumulation, and these effects did not differ between the sexes. These results provide important insights into three unresolved phenomena in the evolution of maternal effects - (i) the evolution of sex-specific maternal allocation in species with simultaneously developing neonates of both sexes; (ii) the link between sex determination and sex-specific acquisition of maternal products; and (iii) the evolution of context-dependent modulation of maternal effects.  相似文献   

13.
Concentration of thyroid hormones in the serum of the rats after 14-day injections of potassium iodide (1, 3, 10, 100, and 500 physiological daily doses) did not differ from the control values. Excessive administration of potassium iodide increased the total iodide content in the rat thyroid tissue by 60–121% (35–108% and 94–128% for the protein-bound and free iodide, respectively), indicating the activation of the uptake and organification of iodide. The long-term injection of both low and high doses of potassium iodide increased the activity of catalase by 8–18% and SOD by 33–50% and enhanced the level of toxic LPO products reacting with thiobarbituric acid by 15–38%. It is suggested that reactive oxygen species and the excessive iodination of proteins (particularly thyroglobulin) induced by the long-term administration of high doses of potassium iodide can play an important role in the development of thyroid dysfunctions and autoimmune diseases.  相似文献   

14.
Early embryonic exposure to maternal glucocorticoids can broadly impact physiology and behaviour across phylogenetically diverse taxa. The transfer of maternal glucocorticoids to offspring may be an inevitable cost associated with poor environmental conditions, or serve as a maternal effect that alters offspring phenotype in preparation for a stressful environment. Regardless, maternal glucocorticoids are likely to have both costs and benefits that are paid and collected over different developmental time periods. We manipulated yolk corticosterone (cort) in domestic chickens (Gallus domesticus) to examine the potential impacts of embryonic exposure to maternal stress on the juvenile stress response and cellular ageing. Here, we report that juveniles exposed to experimentally increased cort in ovo had a protracted decline in cort during the recovery phase of the stress response. All birds, regardless of treatment group, shifted to oxidative stress during an acute stress response. In addition, embryonic exposure to cort resulted in higher levels of reactive oxygen metabolites and an over-representation of short telomeres compared with the control birds. In many species, individuals with higher levels of oxidative stress and shorter telomeres have the poorest survival prospects. Given this, long-term costs of glucocorticoid-induced phenotypes may include accelerated ageing and increased mortality.  相似文献   

15.
Elevated levels of maternal androgens in avian eggs affect numerous traits, including oxidative stress. However, current studies disagree as to whether prenatal androgen exposure enhances or ameliorates oxidative stress. Here, we tested how prenatal testosterone exposure affects oxidative stress in female domestic chickens (Gallus gallus) during the known oxidative challenge of an acute stressor. Prior to incubation, eggs were either injected with an oil vehicle or 5 ng testosterone. At either 17 or 18 days post-hatch, several oxidative stress markers were assessed from blood taken before and after a 20 min acute stressor, as well as following a 25 min recovery from the stressor. We found that, regardless of yolk treatment, during both stress and recovery all individuals were in a state of oxidative stress, with elevated levels of oxidative damage markers accompanied by a reduced total antioxidant capacity. In addition, testosterone-exposed individuals exhibited poorer DNA damage repair efficiencies in comparison with control individuals. Our work suggests that while yolk androgens do not alter oxidative stress directly, they may impair mechanisms of oxidative damage repair.  相似文献   

16.
17.
Nest-site preference and maternal effects on offspring growth   总被引:3,自引:0,他引:3  
Maternal preferences for oviposition sites are assumed to beadaptive, but offspring fitness is not always higher at preferredsites and, thus, further study of the selection pressures thatinfluence oviposition behavior is warranted. Among birds, predationis regarded as the primary agent of selection on nest-site microhabitatpreferences, but alternatives are rarely considered. We testedthe hypothesis that avian nest-site preferences are an adaptiveresponse to fitness costs imposed by variation in nest-sitemicroclimate. We documented that Chestnut-collared Longspurs(Calcarius ornatus) strongly preferred to orient nests towardsthe southeast and showed that this preference influenced microclimate:nests facing southeast had the highest midday temperatures.Yet, preferences were not adaptive because nestlings in nestswith the preferred orientation gained mass at a slower rate,had retarded skeletal growth, and reached a smaller final size.We experimentally tested this result by altering orientationof nests and confirmed, for the first time, that variation innestling growth was causally linked to variation in nest microclimatearising from nest-orientation preferences. Adults respondedto the high temperatures at preferred southeast-facing nestsby spending more time shading young from the sun, apparentlyattempting to ameliorate heat costs. This response, however,resulted in parents spending less time feeding young, potentiallyexplaining slower growth in these nests. Direct effects of highertemperatures may also play a role in slower growth. Althoughwe lack an explanation for this apparently maladaptive preference,these results demonstrate that nest-site choices of birds canyield fitness costs imposed by variation in nest microclimate.  相似文献   

18.
    
In oviparous species like birds, eggs provide the direct environment in which embryos are developing. Mothers may adjust different egg components in different ways in reaction to environmental cues either to adjust offspring development or because of constraints. In this study, we investigated the effects of food quality and quantity before and during egg laying on three different aspects of egg quality: macro‐nutrients (egg and yolk mass), androgens (testosterone and androstenedione), and thyroid hormones (3,5,3′‐triiodothyronine, T3 and l ‐thyroxine, T4), using the rock pigeon (Columba livia). As expected, egg and yolk mass were significantly reduced for the eggs laid under the poor‐food condition, indicating a maternal trade‐off between offspring and self in allocating important resources. We did not find any significant change in yolk testosterone or their within‐clutch pattern over the laying sequence. This is consistent with the fact that, in contrast with nutrients, these hormones are not costly to produce, but does not support the hypothesis that they play a role in adjusting brood size to food conditions. In contrast, we found that T3 levels were higher in the egg yolks under the poor‐food condition whereas the total T4 content was lower. This change could be related to the fact that iodine, the critical constituent of thyroid hormones, might be a limiting factor in the production of this hormone. Given the knowledge that food restriction usually lead to reduction of circulating T3 levels, our results suggested that avian mothers can independently regulate its concentrations in their eggs from their own circulation. The study demonstrates that environmentally induced maternal effects via the egg can be a result of a combination of constrained resources and unconstrained signals and that thyroid hormones might be an interesting case of both. Therefore, this hormone and the interplay of different maternal effects on the offspring phenotype deserve much more attention.  相似文献   

19.
    
Distillers dried grains with solubles (DDGS) are highly susceptible to lipid oxidation because DDGS contain about 10% crude fat, which is largely composed of polyunsaturated fatty acids. l-carnitine serves an important function in fatty acids β-oxidation, and also has antioxidant properties. The objective of this study was to examine the effects of l-carnitine in the DDGS diet of gestating and lactating sows on reproductive performance, milk composition and antioxidant status of sows and their offspring. One hundred and twenty sows (Landrace×Large white, mean parity 4.2, initial BW 230 kg) were randomly allotted to 1 of 4 dietary treatments (n=30 sows/treatment). Treatments were arranged as a 2×2 factorial with two levels of dietary DDGS (0 v. 250 g/kg in gestating diets and 400 g/kg in lactating diets) and two levels of dietary l-carnitine (0 v. 100 mg/kg in gestating diets and 0 v. 200 mg/kg in lactating diets). Distillers dried grains with solubles had no significant effect on litter size but significantly reduced the birth weights and weaning weights of piglets (P<0.05). Distillers dried grains with solubles reduced the antioxidant enzyme activities (P<0.05) and increased the malondialdehyde level in the plasma of sows on day 60 of gestation (P=0.004) and day 14 of lactation (P=0.008). The compositions of colostrum and milk were not affected by inclusion of DDGS and dietary l-carnitine (P>0.05). Supplementing the diets with l-carnitine had no significant effect of total litter size (P>0.05) but increased the number of piglets born alive and piglets weaned, birth weight and weaning weight of piglets and litter weight at birth and weaning (P<0.05). l-carnitine supplementation also increased the concentration of l-carnitine in milk and l-carnitine status of piglets (P<0.05). The antioxidant enzyme activities of new born and weaning piglets were increased (P<0.05) by maternal dietary l-carnitine but this did not extend to finishing pigs. In conclusion, including DDGS in the sows diet could induce oxidative stress, which may be associated with the reduced individual birth and weaning weight of piglets. Dietary l-carnitine supplementation improved the antioxidant and l-carnitine status of sows, which may be associated with the improved reproduction and piglet performance and the antioxidant status of piglets at birth and weaning. There were no interactions between DDGS and l-carnitine.  相似文献   

20.
    
Climatic fluctuations during the Quaternary period governed the demography of species and contributed to population differentiation and ultimately speciation. Studies of these past processes have previously been hindered by a lack of means and genetic data to model changes in effective population size (Ne) through time. However, based on diploid genome sequences of high quality, the recently developed pairwise sequentially Markovian coalescent (PSMC) can estimate trajectories of changes in Ne over considerable time periods. We applied this approach to resequencing data from nearly 200 genomes of four species and several populations of the Ficedula species complex of black‐and‐white flycatchers. Ne curves of Atlas, collared, pied and semicollared flycatcher converged 1–2 million years ago (Ma) at an Ne of ≈ 200 000, likely reflecting the time when all four species last shared a common ancestor. Subsequent separate Ne trajectories are consistent with lineage splitting and speciation. All species showed evidence of population growth up until 100–200 thousand years ago (kya), followed by decline and then start of a new phase of population expansion. However, timing and amplitude of changes in Ne differed among species, and for pied flycatcher, the temporal dynamics of Ne differed between Spanish birds and central/northern European populations. This cautions against extrapolation of demographic inference between lineages and calls for adequate sampling to provide representative pictures of the coalescence process in different species or populations. We also empirically evaluate criteria for proper inference of demographic histories using PSMC and arrive at recommendations of using sequencing data with a mean genome coverage of ≥18X, a per‐site filter of ≥10 reads and no more than 25% of missing data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号