首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

Hypermethylation‐induced epigenetic silencing of tumour suppressor genes (TSGs) are frequent events during carcinogenesis. MicroRNA‐142 (miR‐142) is found to be dysregulated in cancer patients to participate into tumour growth, metastasis and angiogenesis. However, the tumour suppressive role of miR‐142 and the status of methylation are not fully understood in hepatocellular carcinoma (HCC).

Methods

Hepatocellular carcinoma tissues and corresponding non‐neoplastic tissues were collected. The expression and function of miR‐142 and TGF‐β in two HCC cell lines were determined. The miRNA‐mRNA network of miR‐142 was analysed in HCC cell lines.

Results

We found that the miR‐142 expression was reduced in tumour tissues and two HCC cell lines HepG2 and SMMC7721, which correlated to higher TNM stage, metastasis and differentiation. Moreover, miR‐142 was identified to directly target and inhibit transforming growth factor β (TGF‐β), leading to decreased cell vitality, proliferation, EMT and the ability of pro‐angiogenesis in TGF‐β‐dependent manner. Interestingly, the status of methylation of miR‐142 was analysed and the results found the hypermethylated miR‐142 in tumour patients and cell lines. The treatment of methylation inhibitor 5‐Aza could restore the expression of miR‐142 to suppress the TGF‐β expression, which impaired TGF‐β‐induced tumour growth.

Conclusion

These findings implicated that miR‐142 was a tumour suppressor gene in HCC and often hyermethylated to increase TGF‐β‐induced development of hepatocellular carcinoma.
  相似文献   

2.
Cell migration and invasion are key processes in the metastasis of cancer, and suppression of these steps is a promising strategy for cancer therapeutics. The aim of this study was to explore small molecules for treating colorectal cancer (CRC) and to investigate their anti‐metastatic mechanisms. In this study, six CRC cell lines were used. We showed that YH‐306 significantly inhibited the migration and invasion of CRC cells in a dose‐dependent manner. In addition, YH‐306 inhibited cell adhesion and protrusion formation of HCT116 and HT‐29 CRC cells. Moreover, YH‐306 potently suppressed uninhibited proliferation in all six CRC cell lines tested and induced cell apoptosis in four cell lines. Furthermore, YH‐306 inhibited CRC colonization in vitro and suppressed CRC growth in a xenograft mouse model, as well as hepatic/pulmonary metastasis in vivo. YH‐306 suppressed the activation of focal adhesion kinase (FAK), c‐Src, paxillin, and phosphatidylinositol 3‐kinases (PI3K), Rac1 and the expression of matrix metalloproteases (MMP) 2 and MMP9. Meanwhile, YH‐306 also inhibited actin‐related protein (Arp2/3) complex‐mediated actin polymerization. Taken together, YH‐306 is a candidate drug in preventing growth and metastasis of CRC by modulating FAK signalling pathway.  相似文献   

3.
Chemoprevention is one of the most promising and realistic approaches in the prevention of cancer. Several bioactive compounds present in fruits and vegetables have revealed their cancer curative potential on hepatocellular carcinoma. Naringenin is one such naturally occurring flavonoid widely found in citrus fruits. In this study, we examined the molecular mechanisms by which naringenin inhibited NDEA‐induced hepatocellular carcinoma in rats by analysing the expression patterns of proliferating cell nuclear antigen, Bcl‐2, NF‐κB, VEGF and MMP‐2/9. Enhanced cell proliferation and apoptotic evasion in NDEA‐induced hepatocarcinogenesis was associated with imbalance in pro‐apoptotic and anti‐apoptotic proteins together with upregulation of proliferating cell nuclear antigen (PCNA) and downregulation of caspase‐3. Administration of pretreatment and posttreatment of naringenin decreased the expression of PCNA and Bcl‐2 and increased the expression of Bax and caspase‐3, indicating antiproliferative and apoptotic effects, respectively. Administration of NDEA increased the tumour expression of NF‐κB, COX‐2, VEGF, MMP‐2 and MMP‐9 that was correlated with more aggressive lesions and tumour growth. Downregulation of NF‐κB, VEGF and MMPs by naringenin seen in the present study were correlated with the inhibition of liver tumour induced by NDEA. Our results suggest that naringenin could act as a legitimate agent by inhibiting cancer processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Fluvastatin, a lipophilic statin, was known to inhibit proliferation and induce apoptosis in many cancer cells. Its potential anticancer was evaluated in three hepatocellular carcinoma (HCC) cell lines (HepG2, SMMC-7721 and MHCC-97H). Cells were treated with fluvastatin in vitro and its effect on cell proliferation, cell cycle, invasion and apoptosis was determined. Mechanism of apoptosis induced by fluvastatin on HCC cell lines was also investigated through western blotting and mitochondrial membrane potential (MMP) analysis. It was observed that fluvastatin inhibited proliferation of HCC cells by inducing apoptosis and G2/M phase arrest in a dose-dependent manner. The results of cell invasion assay revealed that fluvastatin significantly decreased the invasion potency of HCC cells. A mitochondria-operated mechanism for fluvastatin induced apoptosis might be involved and was supported by Western blotting and MMP analysis. After fluvastatin treatment, expression of Bcl-2 and procaspase-9 were downregulated, cytochrome c (cytosolic extract), Bax and cleaved-caspase-3 protein expression were increased. Furthermore, a breakdown of MMP in HCC cells was observed. To conclude, these results have provided a rationale for clinical investigations of fluvastatin in future as a potential anticancer reagent for growth control of HCC.  相似文献   

5.
E‐cadherin loss is a key biological mechanism in tumour invasion. As a main regulator of epithelial‐mesenchymal transition (EMT) mechanism‐mediated invasion and metastasis, Twist1 plays an important role through its regulation of E‐cadherin expression. However, whether or not Twist2 has the same function in tumour metastasis remains unclear. The purpose of this study is to investigate the expressions and different roles of Twist1 and Twist2 in human hepatocellular carcinoma (HCC). The expressions of Twist1 and Twist2 in HCC tissue were evaluated by immunohistochemical staining. The role of Twist1 and Twist2 in invasiveness was also evaluated in vitro by using HCC cell lines. Twist1 nuclear overexpression is found to be correlated with HCC metastasis, and its expression is negatively correlated with E‐cadherin expression in human tissue. Twist2, a Twist1 homology protein, only expresses in the cytoplasm and shows no significant correlation with HCC metastasis. By ectopic transfection of Twist1 and Twist2 into the HCC cells, HepG2 and PLC, Twist1 is able to down‐regulate E‐cadherin expression and promote matrix metalloproteinase (MMP) activation, specifically in MMP2 and MMP9. In functional assays, Twist1 is found to promote invasion in HepG2 and PLC cells, but the invasion ability of the groups is not affected Twist2. Our findings indicate that Twist1 induces HCC invasion via increased activity in MMPs, leading to poor clinical prognoses. The results of this study also demonstrate a novel cogitation in Twist2, which has no effect on HCC invasion and metastasis. Twist1 may contribute to HCC invasion and metastasis and may be used as a novel therapeutic target for the inhibition of HCC metastasis.  相似文献   

6.
Long non‐coding RNAs (lncRNAs) could regulate growth and metastasis of hepatocellular carcinoma (HCC). In this study, we aimed to investigate the mechanism of lncRNA F11‐AS1 in hepatitis B virus (HBV)–related HCC. The relation of lncRNA F11‐AS1 expression in HBV‐related HCC tissues to prognosis was analysed in silico. Stably HBV‐expressing HepG2.2.15 cells were established to explore the regulation of lncRNA F11‐AS1 by HBx protein, as well as to study the effects of overexpressed lncRNA F11‐AS1 on proliferation, migration, invasion and apoptosis in vitro. Subsequently, the underlying interactions and roles of lncRNA F11‐AS1/miR‐211‐5p/NR1I3 axis in HBV‐related HCC were investigated. Additionally, the influence of lncRNA F11‐AS1 and miR‐211‐5p on tumour growth and metastasis capacity of HepG2.2.15 cells were studied on tumour‐bearing nude mice. Poor expression of lncRNA F11‐AS1 was correlated with poor prognosis in patients with HBV‐related HCC, and its down‐regulation was caused by the HBx protein. lncRNA F11‐AS1 was proved to up‐regulate the NR1I3 expression by binding to miR‐211‐5p. Overexpression of lncRNA F11‐AS1 reduced the proliferation, migration and invasion, yet induced apoptosis of HepG2.2.15 cells in vitro, which could be abolished by overexpression of miR‐211‐5p. Additionally, either lncRNA F11‐AS1 overexpression or miR‐211‐5p inhibition attenuated the tumour growth and metastasis capacity of HepG2.2.15 cells in vivo. Collectively, lncRNA F11‐AS1 acted as a modulator of miR‐211‐5p to positively regulate the expression of NR1I3, and the lncRNA F11‐AS1/miR‐211‐5p/NR1I3 axis participated in HBV‐related HCC progression via interference with the cellular physiology of HCC.  相似文献   

7.
Genistein, a naturally occurring isoflavone found chiefly in soybeans, has been reported to be a potent antitumor agent. Genistein is presumed to exert multiple effects related to the inhibition of cancer growth. Metastatic melanoma is a chemotherapy‐refractory neoplasm. The present study was designed to explore the possible activity of genistein to inhibit the aberrant proliferation and to induce apoptosis of human malignant melanoma cells in cooperation with cisplatin treatment. Five human melanoma cell lines were utilized for these experiments. Genistein at physiologic concentrations (20 μM) did not induce apoptosis by itself but did enhance cisplatin‐induced apoptosis in all five human melanoma cell lines tested. The enhanced susceptibility among the cell lines was diverse. Changes in the expression of two anti‐apoptotic proteins, bcl‐2 and bcl‐xL, and one pro‐apoptotic protein, apoptotic protease activating factor‐1 (Apaf‐1), were examined. Genistein alone or cisplatin alone generally did not alter bcl‐2 expression or bcl‐xL expression, but slightly increased Apaf‐1 in some cell lines. The combined treatment with genistein and cisplatin significantly reduced bcl‐2 and bcl‐xL protein and increased Apaf‐1 protein expression. These data suggest that genistein therapy may enhance the chemosensitivity of melanoma patients.  相似文献   

8.
To investigate the effects of lentiviral vector‐mediated shRNA suppressing CXCR7 on tumour invasion and metastasis in hepatocellular carcinoma (HCC) after transcatheter arterial chemoembolization (TACE). HCCLM3 cell lines were cultured and assigned into the CXCR7‐shRNA, negative control (NC) and blank groups. The qRT‐PCR and Western blotting were applied to detect the mRNA and protein expressions of CXCR7, CXCR4 and MMP‐2 in HCCLM3 cells. Cell proliferation and invasion were evaluated by MTT and Transwell assays. A Buffalo rat model of HCC was established. Fifty model rats were divided into the CXCR7‐shRNA + TACE, CXCR7‐shRNA, TACE, NC and control groups. Immunohistochemistry was performed to detect the expressions of CXCR7, MMP‐2, vascular endothelial growth factor (VEGF) and intratumoral CD31‐positive vessel count in tumour tissues of mice. Compared with the blank and NC groups, the mRNA and protein expressions of CXCR7 and MMP‐2 were decreased in the CXCR7‐shRNA group. The cell proliferation and invasion rates of the CXCR7‐shRNA group were lower than the blank and NC groups. At the 4th week after TACE, tumour weight of the CXCR7‐shRNA + TACE group increased continuously. The CXCR7‐shRNA + TACE group showed longer survival time and smaller tumour sizes than other groups. Compared with other groups, the CXCR7‐shRNA + TACE and CXCR7‐shRNA groups had less number of lung metastatic nodules and lower expressions of CXCR7, MMP‐2, VEGF and CD31‐positive vessel count. CXCR7‐shRNA inhibits tumour invasion and metastasis to improve the efficacy of TACE in HCC by reducing the expressions of CXCR7, MMP‐2 and VEGF.  相似文献   

9.
Hepatocellular carcinoma (HCC) is the sixth most common malignancy with limited treatment options. Hinokiflavone (HF), a natural biflavonoid, has shown to inhibit the proliferation of melanoma, whereas its antitumour effect against HCC and the underlying mechanisms remain elusive. Here, we aimed at evaluating its antitumour effect against HCC in both in vitro and in vivo. Cell counting kit 8, colony formation assay, PI/RNase staining and Western blotting revealed that HF inhibited the proliferation of HCC cells via G0/G1 cell cycle arrest with p21/p53 up‐regulation. DAPI staining, Annexin V‐FITC/PI staining and Western blotting confirmed that HF triggered caspase‐dependent apoptosis. Moreover, HF increased the levels of mitochondrial reactive oxygen species (mtROS) and activated c‐Jun N‐terminal kinase (JNK) pathway, as measured by MitoSOX Red staining and Western blotting. After respectively inhibiting mtROS (Mito‐TEMPO) and JNK (SP600125), HF‐induced apoptosis was reversed. Additionally, Western blotting documented that HF suppressed nuclear factor kappa B (NF‐κB) activity and the anti‐apoptotic genes downstream, contributing to cell apoptosis. Finally, in vivo studies demonstrated that HF significantly impaired tumour growth in HCC xenograft. Collectively, these findings suggested that HF induced apoptosis through activating mtROS/JNK/caspase pathway and inhibiting NF‐κB signalling, which may represent a novel therapeutic agent for treating HCC.  相似文献   

10.
MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR‐301b‐3p functions as a driver in various types of human cancer. However, the expression pattern of miR‐301b‐3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR‐301b‐3p expression was significantly up‐regulated in HCC tissues compared to adjacent non‐tumour tissues. Clinical association analysis revealed that the high level of miR‐301b‐3p closely correlated with large tumour size and advanced tumour‐node‐metastasis stages. Importantly, the high miR‐301b‐3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR‐301b‐3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR‐301b‐3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR‐301b‐3p directly bond to 3′UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down‐regulated and inversely correlated with miR‐301b‐3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR‐301b‐3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR‐301b‐3p is highly expressed in HCC. miR‐301b‐3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.  相似文献   

11.
The side effects of chemotherapy, drug resistance, and tumor metastasis hinder the development of treatment for osteosarcoma, leading to poor prognosis of patients with the disease. Proscillaridin A, a kind of cardiac glycoside, has been proven to have anti-proliferative properties in many malignant tumors, but the efficacy of the drug in treating osteosarcoma is unclear. In the present study, we assessed the effects of Proscillaridin A on osteosarcoma and investigated its underlying action mechanism. The cell cytotoxicity assay showed that Proscillaridin A significantly inhibited the proliferation of 143B cells in a dose- and time-dependent manner. Also, flow cytometry and invasion assay revealed that Proscillaridin A induced apoptosis and reduced 143B cell motility. Western blotting and PCR were used to detect the expressions of Bcl-xl and MMP2 and showed that mRNA/protein expression levels decreased significantly in Proscillaridin A-treated osteosarcoma cells. Using a mouse xenograft model, we found that Proscillaridin A treatment significantly inhibited tumor growth and lung metastasis in vivo and decreased the expression levels of Bcl-xl and MMP2. No noticeable side effect was observed in the liver, kidney, and hematological functions. Conclusively, Proscillaridin A suppressed proliferation, induced apoptosis, and inhibited 143B cell metastasis in vitro and in vivo, and these effects could be mediated by downregulating the expressions of Bcl-xl and MMP2.  相似文献   

12.
As a potential antitumor herbal medicine, plantamajoside (PMS) benefits the treatment of many human malignances. However, the role of PMS in the progression of hepatocellular carcinoma (HCC) and the related molecular mechanisms is still unknown. Here, we proved that the cell viabilities of HepG2 cells were gradually decreased with the increasing concentrations of CoCl2 and/or PMS via cell counting kit‐8 assay. Meanwhile, 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide (MTT) and western blot assays were used to further confirm that PMS inhibited the CoCl2‐induced cell proliferation in HepG2 cells via suppressing the Ki67 and proliferating cell nuclear antigen expressions. We also performed wound‐healing and transwell assays and demonstrated that PMS inhibited CoCl2‐induced migration and invasion in HepG2 cells via suppressing the epithelial–mesenchymal transition (EMT) process. In addition, the use of 3‐(5′‐hydroxymethyl‐2′‐furyl)‐1‐benzylindazole further proved that PMS inhibited the malignant biological behaviors of HepG2 cells under hypoxic condition by suppressing the hypoxia‐inducible factor‐1α (HIF‐1α) expression. Besides, we further confirmed that PMS suppressed the growth and metastasis of implanted tumors in vivo. Given that PMS suppressed the proliferation and EMT induced by CoCl2 in HCC cells via downregulating HIF‐1α signaling pathway, we provided evidence that PMS might be a novel anti‐cancer drug for HCC treatment.  相似文献   

13.
The TNF‐α (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid‐differentiated cells to TNF‐α. Hemin‐differentiated K562 cells showed higher sensitivity to TNF‐induced apoptosis than undifferentiated cells. At the same time, hemin‐induced erythroid differentiation reduced c‐FLIP (cellular FLICE‐inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c‐FLIP levels. On the other hand, erythroid‐differentiated UT‐7 cells – dependent on Epo for survival – showed resistance to TNF‐α pro‐apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol‐3 kinase)‐mediated pathways, which was accompanied by negative c‐FLIP modulation and increased erythroid differentiation, were UT‐7 cells sensitive to TNF‐α‐triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF‐α, depending on cell type and environmental conditions. The role of c‐FLIP seemed to be critical in the protection of erythroid‐differentiated cells from apoptosis or in the determination of their sensitivity to TNF‐mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c‐FLIP down‐regulation, proved to have an anti‐apoptotic effect against the pro‐inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.  相似文献   

14.
Branched‐chain amino acids (BCAA) supplementation has been reported to suppress the incidence of liver cancer in obese patients with liver cirrhosis or in obese and diabetic model animals of carcinogenesis. Whether BCAA directly suppresses cell proliferation of hepatic tumor cells under hyperinsulinemic condition remain to be defined. The aim of this study was to investigate the effects of BCAA on insulin‐induced proliferation of hepatic tumor cells and determine the underlying mechanisms. BCAA suppressed insulin‐induced cell proliferation of H4IIE, HepG2 cells. In H4IIE cells, BCAA did not affect cell cycle progression but increased apoptosis by suppressing expressions of anti‐apoptotic genes and inducing pro‐apoptotic gene via inactivation of PI3K/Akt and NF‐κB signaling pathways. Further studies demonstrated that BCAA inhibited PI3K/Akt pathway not only by promoting negative feedback loop from mammalian target of rapamycin complex 1 (mTORC1)/S6K1 to PI3K/Akt pathway, but also by suppressing mTORC2 kinase activity toward Akt. Our findings suggest that BCAA supplementation may be useful to suppress liver cancer progression by inhibiting insulin‐induced PI3K/Akt and subsequent anti‐apoptotic pathway, indicating the importance of BCAA supplementation to the obese patients with advanced liver disease. J. Cell. Physiol. 227: 2097–2105, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Tanshinone I (Tan I) is a widely used diterpene compound derived from the traditional Chinese herb Danshen. Increasing evidence suggests that it exhibits anti‐cancer activity in various human cancers. However, the in vitro and in vivo effects of Tan I on osteosarcoma (OS) remain inadequately elucidated, especially those against tumour metastasis. Our results showed that Tan I significantly inhibited OS cancer cell proliferation, migration and invasion and induced cell apoptosis in vitro. Moreover, treatment with 10 and 20 mg/kg Tan I effectively suppressed tumour growth in subcutaneous xenografts and orthotopic xenograft mouse models. In addition, Tan I significantly inhibited tumour metastasis in intracardiac inoculation xenograft models. The results also showed that Tan I‐induced increased expression of the proapoptotic gene Bax and decreased expression of the anti‐apoptotic gene Bcl‐2 is the possible mechanism of its anti‐cancer effects. Tan I was also found to abolish the IL‐6‐mediated activation of the JAK/STAT3 signalling pathway. Conclusively, this study is the first to show that Tan I suppresses OS growth and metastasis in vitro and in vivo, suggesting it may be a potential novel and efficient drug candidate for the treatment of OS progression.  相似文献   

16.
Colon carcinoma invasiveness is a process involving cell–cell and cell–matrix alterations, local proteolysis of the ECM (extracellular matrix) or changes in cytokine and growth factor levels. In order to evaluate the role of TGF‐β1 (transforming growth factor‐β1) and small G protein RhoA in tumour progression, the influence of TGF‐β1 treatment or RhoA‐associated kinase inhibitor on the production of NO (nitric oxide) and MMP‐2 and MMP‐9 (metalloproteinases‐2 and ‐9) was analysed in three human colon adenocarcinoma cell lines (HT29, LS180, SW948) representing different stages of tumour development. All the tested cell lines produced low amounts of MMP‐2 and MMP‐9. rhTGF‐β1 and the synthetic Rho kinase inhibitor (Y‐27632) decreased MMP‐2 secretion by colon cancer cells, especially in the most advanced stage of colon cancer. rhTGF‐β1 decreased NO secretion by cells, while Y‐27632 had no effect on it. Immunoblotting with anti‐RhoA antibodies followed by densitometry revealed that RhoA levels were slightly increased after incubation of colon carcinoma cells (SW948) with rhTGF‐β1. rhTGF‐β1 induced α‐smooth muscle actin (α‐SMA) expression, especially in high Duke's grade of colon cancer, while Y‐27632 blocked it. Summing up, in colon carcinoma cells, TGF‐β1 and RhoA protein may regulate tumour invasiveness measured as MMP, NO and α‐SMA expression or assayed using motility data and may be a good target for cancer therapy.  相似文献   

17.
18.
Epidermal growth factor (EGF) and their receptor (EGFR) play an important role in the development of cancer proliferation, and metastasis, although the mechanism remains unclear. The present study aimed at investigating the role of EGF‐EGFR signalling pathway in the development of human hepatocellular carcinoma (HCC) inflammatory environment. Gene profiles of inflammatory cytokines from HCC were measured. Cell bio‐behaviours of HCC with low or high metastasis were detected by the live cell monitoring system. Cell proliferation was measured by CCK8. The protein level of CXCL5 and CXCL8 was measured by ELISA. The phosphorylation of PI3K, ERK, MAPK was measured by western blot. EGF significantly induced cell proliferation in HepG2 cells, but not in HCCLM3 cells. EGF prompted the cell movement in both HepG2 and HCCLM3 and regulated the production of CXCL5 and CXCL8 from HCC, which were inhibited by EGFR inhibitor, Erk inhibitor (U0126), or PI3K inhibitors (BEZ‐235 and SHBM1009). HCC proliferation, metastasis and production of inflammatory cytokines were regulated via EGF‐EGFR signal pathways. CXCL5 could interact with CXCL8, possibly by CXCR2 or the cross‐talk between CXCR2 and EGFR. EGF‐EGFR signaling pathway can be the potential target of therapies for HCC.  相似文献   

19.
Antitumor activity of triterpenoid and its derivatives has attracted great attention recently. Our previous efforts led to the discovery of a series of NO‐donor betulin derivatives with potent antitumor activity. Herein, we prepared eight compounds derived from ursolic acid (UA). All the compounds were evaluated for their in vitro cytotoxicity against four human cancer cell lines (HepG‐2, MCF‐7, HT‐29 and A549). Among the compounds tested, compound 4a was found to be most active against HT‐29 (IC50=4.28 μm ). Further biological assays demonstrated that compound 4a could induce cell cycle arrest at G1 phase and apoptosis in a dose‐dependent manner. In addition, compound 4a was found to upregulate pro‐apoptotic Bax, p53 and downregulate anti‐apoptotic Bcl‐2. All these results suggested that compound 4a is a potential candidate drug for the therapy of colon cancer.  相似文献   

20.
We aimed to elucidate the effects of hepatoma‐derived growth factor (HDGF) on growth and metastasis of hepatocellular carcinoma (HCC) cells. Tissue microarrays with 236 HCC specimens and 18 extrahepatic metastases were utilized to detect the HDGF expression by immunohistochemistry. Meanwhile, HDGF expressions in HCC cell lines with different metastatic potentials were examined using immunofluorescence staining, real‐time PCR and western blotting. After HDGF silencing, the growth and metastatic potentials of HCC cells were evaluated by soft agar assay, invasion assay, together with tumorigenicity assay in nude mice. The gelatin zymography was performed by detecting MMP‐2 and MMP‐9 levels. Additionally, western blotting was conducted to determine the levels of total and phosphorylated ERK1/2, JNK, p38 and Akt. The results showed that HDGF was overexpressed in HCC metastasis tumour, and the expression increased with the differentiation degree of tumours (Grade I 44.0%, Grade II 48.4% and Grade III 65.6%). Consistently, HDGF levels were positively associated with the metastatic capability of HCC cells (MHCC97L < MHCC97H < HCCLM3). The growth and metastasis were suppressed by HDGF‐siRNA. Gelatinolytic activities were enhanced in the three metastatic HCC cell lines, but had no significant difference among them. The tumourigenicity and metastatic capability of HCCLM3 cells in nude mice were inhibited after silencing HDGF. Meanwhile, HDGF‐siRNA specifically suppressed the total and phosphorylated protein levels of ERK1/2, while not JNK, p38 and Akt. In conclusion, HDGF was overexpressed in HCC patients and cells, and HDGF might be closely correlated with HCC metastasis via regulating ERK signalling pathway. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号