首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the contributions of Dickkopf‐1 (DKK1) towards the induction of vasculogenic mimicry (VM) in non‐small cell lung cancer (NSCLC), we evaluated cohorts of primary tumours, performed in vitro functional studies and generated xenograft mouse models. Vasculogenic mimicry was observed in 28 of 205 NSCLC tumours, while DKK1 was detected in 133 cases. Notably, DKK1 was positively associated with VM. Statistical analysis showed that VM and DKK1 were both related to aggressive clinical course and thus were indicators of a poor prognosis. Moreover, expression of epithelial‐mesenchymal transition (EMT)‐related proteins (vimentin, Slug, and Twist), cancer stem‐like cell (CSC)‐related proteins (nestin and CD44), VM‐related proteins (MMP2, MMP9, and vascular endothelial‐cadherin), and β‐catenin‐nu were all elevated in VM‐positive and DKK1‐positive tumours, whereas the epithelial marker (E‐cadherin) was reduced in the VM‐positive and DKK1‐positive groups. Non‐small cell lung cancer cell lines with overexpressed or silenced DKK1 highlighted its role in the restoration of mesenchymal phenotypes and development of CSC characteristics. Moreover, DKK1 significantly promotes NSCLC tumour cells to migrate, invade and proliferate. In vivo animal studies demonstrated that DKK1 enhances the growth of transplanted human tumours cells, as well as increased VM formation, mesenthymal phenotypes and CSC properties. Our results suggest that DKK1 can promote VM formation via induction of the expression of EMT and CSC‐related proteins. As such, we feel that DKK1 may represent a novel target of NSCLC therapy.  相似文献   

2.
The catalytic subunit of γ‐glutamylcysteine ligase (GCLC) catalyses the rate‐limiting step in the de novo synthesis of glutathione (GSH), which is involved in maintaining intracellular redox balance. GSH is especially important for antioxidant defense system since beta‐cells show intrinsically low expression of antioxidant enzymes. In the present study, we investigated the regulatory mechanisms by which quercetin, a flavonoid, induces the expression of the GCLC gene in rat pancreatic beta‐cell line INS‐1. Promoter study found that the proximal GC‐rich region (from ?90 to ?34) of the GCLC promoter contained the quercetin‐responsive cis‐element(s). The quercetin‐responsive region contains consensus DNA binding site for early growth response 1 (EGR1) at ‐67 (5′‐CGCCTCCGC‐3′) which overlaps with a putative Sp1 binding site. Electrophoretic mobility shift assay showed that an oligonucleotide containing the EGR1 site was bound to nuclear factors EGR1, Sp1, and Sp3. In the promoter analysis, mutation of EGR1 site significantly reduced the quercetin response, whereas mutation of Sp1 site decreased only the basal activity of the GCLC promoter. Additionally, the transient overexpression of EGR1 significantly increased basal activity of the GCLC promoter. Finally, we showed that quercetin potently induced both EGR1 mRNA and its protein levels without affecting the expression of Sp1 and Sp3 proteins. Therefore, we concluded that EGR1 was bound to GC‐rich region of the GCLC gene promoter, which was prerequisite for the transactivation of the GCLC gene by quercetin. J. Cell. Biochem. 108: 1346–1355, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
4.
5.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

6.
Long non‐coding RNAs (lncRNAs), a group of non‐protein‐coding RNAs with more than 200 nucleotides in length, are involved in multiple biological processes, such as the proliferation, apoptosis, migration and invasion. Moreover, numerous studies have shown that lncRNAs play important roles as oncogenes or tumour suppressor genes in human cancers. In this paper, we concentrate on actin filament‐associated protein 1‐antisense RNA 1 (AFAP1‐AS1), a well‐known long non‐coding RNA that is overexpressed in various tumour tissues and cell lines, including oesophageal cancer, pancreatic ductal adenocarcinoma, nasopharyngeal carcinoma, lung cancer, hepatocellular carcinoma, ovarian cancer, colorectal cancer, biliary tract cancer and gastric cancer. Moreover, high expression of AFAP1‐AS1 was associated with the clinicopathological features and cancer progression. In this review, we sum up the current studies on the characteristics of AFAP1‐AS1 in the biological function and mechanism of human cancers.  相似文献   

7.
Long non‐coding RNAs (lncRNAs) take various effects in cancer mostly through sponging with microRNAs (miRNAs). lncRNA NR2F1‐AS1 is found to promote tumour progression in hepatocellular carcinoma, endometrial cancer and thyroid cancer. However, the role of lncRNA NR2F1‐AS1 in breast cancer angiogenesis remains unknown. In this study, we found lncRNA NR2F1‐AS1 was positively related with CD31 and CD34 in breast cancer through Pearson's correlation analysis, while lncRNA NR2F1‐AS1 transfection promoted human umbilical vascular endothelial cell (HUVEC) tube formation. In breast cancer cells, lncRNA NR2F1‐AS1 enhanced the HUVEC proliferation, tube formation and migration ability through tumour‐conditioned medium (TCM). In zebrafish model, lncRNA NR2F1‐AS1 increased the breast cancer cell‐related neo‐vasculature and subsequently promoted the breast cancer cell metastasis. In mouse model, lncRNA NR2F1‐AS1 promoted the tumour vessel formation, increased the micro vessel density (MVD) and then induced the growth of primary tumour. Mechanically, lncRNA NR2F1‐AS1 increased insulin‐like growth factor‐1 (IGF‐1) expression through sponging miRNA‐338‐3p in breast cancer cells and then activated the receptor of IGF‐1 (IGF‐1R) and extracellular signal‐regulated kinase (ERK) pathway in HUVECs. These results indicated that lncRNA NR2F1‐AS1 could promote breast cancer angiogenesis through IGF‐1/IGF‐1R/ERK pathway.  相似文献   

8.
9.
Sip1/tuftelin‐interacting protein (STIP), a multidomain nuclear protein, is a novel factor associated with the spliceosome, yet its role and molecular function in cancer remain unknown. In this study, we show, for the first time, that STIP is overexpressed in non‐small cell lung cancer (NSCLC) tissues compared to adjacent normal lung tissues. The depletion of endogenous STIP inhibited NSCLC cell proliferation in vitro and in vivo, caused cell cycle arrest and induced apoptosis. Cell cycle arrest at the G2/M phase was associated with the expression and activity of the cyclin B1‐CDK1 (cyclin‐dependent kinase 1) complex. We also provide evidence that STIP knockdown induced apoptosis by activating both caspase‐9 and caspase‐3 and by altering the Bcl‐2/Bax expression ratio. RNA sequencing data indicated that the MAPK mitogen‐activated protein kinases, Wnt, PI3K/AKT, and NF‐κB (nuclear factor kappa‐light‐chain‐enhancer of activated B cells) signalling pathways might be involved in STIP‐mediated tumour regulation. Collectively, these results suggest that STIP may be a novel potential diagnostic and therapeutic target for NSCLC.  相似文献   

10.
The purpose of this study was to determine the correlation between over‐expression of the neuropilin 1 (NRP1) gene and growth, survival, and radio‐sensitivity of non‐small cell lung carcinoma (NSCLC) cells. 3‐[4,5‐dimethylthylthiazol‐2‐yl]‐2,5 diphenyltetrazolium broide (MTT) and colony assays were then performed to determine the effect of NRP1 inhibition on the in vitro growth of NSCLC cells. The Annexin V‐Fluorescein Isothiocyanate (FITC) apoptosis detection assay was performed to analyse the effect of NRP1 enhancement on apoptosis of NSCLC cells. Transwell invasion and migration assays were employed to examine the metastatic ability of A549 cells post X‐ray irradiation. In addition, Western blot assays were carried out to detect the protein level of VEGFR2, PI3K and NF‐κB. Finally, to examine the effect of shNRP1 on proliferation and radio‐sensitivity in vivo, a subcutaneous tumour formation assay in nude mice was performed. Microvessel density in tumour tissues was assessed by immunohistochemistry. The stable transfected cell line (shNRP1‐A549) showed a significant reduction in colony‐forming ability and proliferation not only in vitro, but also in vivo. Moreover, shRNA‐mediated NRP1 inhibition also significantly enhanced the radio‐sensitivity of NSCLC cells both in vitro and in vivo. The over‐expression of NRP1 was correlated with growth, survival and radio‐resistance of NSCLC cells via the VEGF‐PI3K‐ NF‐κB pathway, and NRP1 may be a molecular therapeutic target for gene therapy or radio‐sensitization of NSCLC.  相似文献   

11.
The role of long non‐coding RNAs (lncRNAs) in thyroid carcinoma (TC), the most frequent endocrine malignancy, has been extensively examined. This study investigated effect of interaction among lncRNA TNRC6C‐AS1, serine/threonine‐protein kinase 4 (STK4) and Hippo signalling pathway on TC. Initially, lncRNA TNRC6C‐AS1 expression in TC tissues was detected. To explore roles of lncRNA TNRC6C‐AS1, STK4 and Hippo signalling pathway in TC progression, their expressions were altered. Interaction between lncRNA TNRC6C‐AS1 and STK4, STK4 promoter methylation, or Hippo signalling pathway was verified. After that, a series of experiments were employed to evaluate in vitro ability of apoptosis, proliferation and autophagy of TC cells and in vivo tumorigenicity, and tumour growth of TC cells. lncRNA TNRC6C‐AS1 was highly expressed while STK4 was poorly expressed in TC tissues. LncRNA TNRC6C‐AS1 promoted the STK4 methylation and down‐regulated STK4 expression, which further activated the Hippo signalling pathway. STK4 silencing was observed to promote the proliferation ability of TC cells, inhibit the apoptosis and autophagy abilities, as well as enhance the tumorigenicity and tumour growth. Moreover, the in vitro proliferation ability as well as the in vivo tumorigenicity and tumour growth of TC cells were inhibited after the blockade of Hippo signalling pathway, while the apoptosis and autophagy abilities were promoted. The results demonstrate that the lncRNA TNRC6C‐AS1 increases STK4 promoter methylation to down‐regulate STK4 expression, thereby promoting the development of TC through activation of Hippo signalling pathway. It highlights that lncRNA TNRC6C‐AS1 may be a novel therapeutic target for the treatment of TC.  相似文献   

12.
Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD‐1) are immune checkpoint proteins expressed in T cells. Although CTLA4 expression was found in multiple tumours including non‐small cell lung cancer (NSCLC) tissues and cells, its function in tumour cells is unknown. Recently, PD‐1 was found to be expressed in melanoma cells and to promote tumorigenesis. We found that CTLA4 was expressed in a subset of NSCLC cell lines and in a subgroup of cancer cells within the lung cancer tissues. We further found that in NSCLC cells, anti‐CTLA4 antibody can induce PD‐L1 expression, which is mediated by CTLA4 and the EGFR pathway involving phosphorylation of MEK and ERK. In CTLA4 knockout cells, EGFR knockout cells or in the presence of an EGFR tyrosine kinase inhibitor, anti‐CTLA4 antibody was not able to induce PD‐L1 expression in NSCLC cells. Moreover, anti‐CTLA4 antibody promoted NSCLC cell proliferation in vitro and tumour growth in vivo in the absence of adaptive immunity. These results suggest that tumour cell‐intrinsic CTLA4 can regulate PD‐L1 expression and cell proliferation, and that anti‐CTLA4 antibody, by binding to the tumour cell‐intrinsic CTLA4, may result in the activation of the EGFR pathway in cancer cells.  相似文献   

13.
14.
15.
Recent studies suggest that paired box 5 (PAX5) is down‐regulated in multiple tumours through its promoter methylation. However, the role of PAX5 in non‐small cell lung cancer (NSCLC) pathogenesis remains unclear. The aim of this study is to examine PAX5 expression, its methylation status, biological functions and related molecular mechanism in NSCLC. We found that PAX5 was widely expressed in normal adult tissues but silenced or down‐regulated in 88% (7/8) of NSCLC cell lines. PAX5 expression level was significantly lower in NSCLC than that in adjacent non‐cancerous tissues (P = 0.0201). PAX5 down‐regulation was closely associated with its promoter hypermethylation status and PAX5 expression could be restored by demethylation treatment. Frequent PAX5 promoter methylation in primary tumours (70%) was correlated with lung tumour histological types (P = 0.006). Ectopic expression of PAX5 in silenced lung cancer cell lines (A549 and H1975) inhibited their colony formation and cell viability, arrested cell cycle at G2 phase and suppressed cell migration/invasion as well as tumorigenicity in nude mice. Restoration of PAX5 expression resulted in the down‐regulation of β‐catenin and up‐regulation of tissue inhibitors of metalloproteinase 2, GADD45G in lung tumour cells. In summary, PAX5 was found to be an epigenetically inactivated tumour suppressor that inhibits NSCLC cell proliferation and metastasis, through down‐regulating the β‐catenin pathway and up‐regulating GADD45G expression.  相似文献   

16.
17.
18.
The pathogenesis of lung cancer is to be further investigated. Recent reports indicate that phospholipase C ε‐1 (PLCE1) is a critical molecule involved in tumour growth. This study aims to investigate the role of PLCE1 in the regulation of apoptosis in lung cancer cells. In this study, the surgically removed non‐small‐cell lung cancer (NSCLC) tissue was collected from 36 patients. Single NSCLC cells were prepared from the tissue, in which immune cells of CD3+, CD11c+, CD19+, CD68+ and CD14+ were eliminated by magnetic cell sorting. The expression of PLCE1 and p53 was assessed by quantitative real‐time polymerase chain reaction and Western blotting. Apoptosis of NSCLC cells was analysed by flow cytometry. The results showed that, in cultured NSCLC cells, high levels of PLCE1 and low levels p53 were detected; the two molecules showed a negative correlation (p < 0.01). The addition of anti‐PLCE1 antibody increased the expression of p53 in NSCLC cells, which increased the frequency of apoptotic NSCLC cells. We conclude that NSCLC cells express high levels of PLCE1, which suppresses the expression of p53 in NSCLC cells. PLCE1 can be a therapeutic target of NSCLC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Thyroid cancer (TC) is a prevalent endocrine malignant cancer whose pathogenic mechanism remains unclear. The aim of the study was to investigate the roles of long non‐coding RNA (lncRNA) NR2F1‐AS1/miRNA‐338‐3P/CCND1 axis in TC progression. Differentially expressed lncRNAs and mRNAs in TC tissues were screened out and visualized by R program. Relative expression of NR2F1‐AS1, miRNA‐338‐3p and cyclin D1 (CCND1) was determined by quantitative real time polymerase chain reaction. In addition, Western blot analysis was adopted for evaluation of protein expression of CCND1. Targeted relationships between NR2F1‐AS1 and miRNA‐338‐3p, as well as miRNA‐338‐3p and CCND1 were predicted using bioinformatics analysis and validated by dual‐luciferase reporter gene assay. Besides, tumour xenograft assay was adopted for verification of the role of NR2F1‐AS1 in TC in vivo. NR2F1‐AS1 and CCND1 were overexpressed, whereas miRNA‐338‐3p was down‐regulated in TC tissues and cell lines. Down‐regulation of NR2F1‐AS1 and CCND1 suppressed proliferation and migration of TC cells yet greatly enhanced cell apoptotic rate. Silence of NR2F1‐AS1 significantly suppressed TC tumorigenesis in vivo. NR2F1‐AS1 sponged miRNA‐338‐3p to up‐regulate CCND1 expression to promote TC progression. Our study demonstrated that up‐regulation of NR2F1‐AS1 accelerated TC progression through regulating miRNA‐338‐3P/CCND1 axis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号