首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub‐Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to be tightly coupled across PFTs in sub‐Arctic tundra vegetation, which simplifies up‐scaling by allowing quantification of the main drivers of P from remotely sensed LT. Our objective was to test the LTNT relationship across multiple Arctic latitudes and to assess LT as a predictor of P for the pan‐Arctic. Including PFT‐specific parameters in models of LTNT coupling provided only incremental improvements in model fit, but significant improvements were gained from including site‐specific parameters. The degree of curvature in the LTNT relationship, controlled by a fitted canopy nitrogen extinction co‐efficient, was negatively related to average levels of diffuse radiation at a site. This is consistent with theoretical predictions of more uniform vertical canopy N distributions under diffuse light conditions. Higher latitude sites had higher average leaf N content by mass (NM), and we show for the first time that LTNT coupling is achieved across latitudes via canopy‐scale trade‐offs between NM and leaf mass per unit leaf area (LM). Site‐specific parameters provided small but significant improvements in models of P based on LT and moss cover. Our results suggest that differences in LTNT coupling between sites could be used to improve pan‐Arctic models of P and we provide unique evidence that prevailing radiation conditions can significantly affect N allocation over regional scales.  相似文献   

2.
The mechanisms governing tree drought mortality and recovery remain a subject of inquiry and active debate given their role in the terrestrial carbon cycle and their concomitant impact on climate change. Counter‐intuitively, many trees do not die during the drought itself. Indeed, observations globally have documented that trees often grow for several years after drought before mortality. A combination of meta‐analysis and tree physiological models demonstrate that optimal carbon allocation after drought explains observed patterns of delayed tree mortality and provides a predictive recovery framework. Specifically, post‐drought, trees attempt to repair water transport tissue and achieve positive carbon balance through regrowing drought‐damaged xylem. Furthermore, the number of years of xylem regrowth required to recover function increases with tree size, explaining why drought mortality increases with size. These results indicate that tree resilience to drought‐kill may increase in the future, provided that CO2 fertilisation facilitates more rapid xylem regrowth.  相似文献   

3.
Plant functional traits provide a link in process‐based vegetation models between plant‐level physiology and ecosystem‐level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large‐scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type‐specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.  相似文献   

4.
The terrestrial carbon cycle plays a critical role in determining levels of atmospheric CO2 that result from anthropogenic carbon emissions. Elevated atmospheric CO2 is thought to stimulate terrestrial carbon uptake, through the process of CO2 fertilization of vegetation productivity. This negative carbon cycle feedback results in reduced atmospheric CO2 growth, and has likely accounted for a substantial portion of the historical terrestrial carbon sink. However, the future strength of CO2 fertilization in response to continued carbon emissions and atmospheric CO2 rise is highly uncertain. In this paper, the ramifications of CO2 fertilization in simulations of future climate change are explored, using an intermediate complexity coupled climate–carbon model. It is shown that the absence of future CO2 fertilization results in substantially higher future CO2 levels in the atmosphere, as this removes the dominant contributor to future terrestrial carbon uptake in the model. As a result, climate changes are larger, though the radiative effect of higher CO2 on surface temperatures in the model is offset by about 30% due to reduced positive dynamic vegetation feedbacks; that is, the removal of CO2 fertilization results in less vegetation expansion in the model, which would otherwise constitute an important positive surface albedo‐temperature feedback. However, the effect of larger climate changes has other important implications for the carbon cycle – notably to further weaken remaining carbon sinks in the model. As a result, positive climate–carbon cycle feedbacks are larger when CO2 fertilization is absent. This creates an interesting synergism of terrestrial carbon cycle feedbacks, whereby positive (climate–carbon cycle) feedbacks are amplified when a negative (CO2 fertilization) feedback is removed.  相似文献   

5.
6.
Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic rate (the main [CO2] response); increasing length of growing season (the main temperature response); and higher leaf-area index (the main N deposition and partly [CO2] response). Soil organic matter will increase with increasing litter input, although priming may decrease the soil C stock initially, but litter quality effects should be minimal (response to [CO2], N deposition, and temperature); will decrease because of increasing temperature; and will increase because of retardation of decomposition with N deposition, although the rate of decomposition of high-quality litter can be increased and that of low-quality litter decreased. Single-factor responses can be misleading because of interactions between factors, in particular those between N and other factors, and indirect effects such as increased N availability from temperature-induced decomposition. In the long term the strength of feedbacks, for example the increasing demand for N from increased growth, will dominate over short-term responses to single factors. However, management has considerable potential for controlling the C store.  相似文献   

7.
Mountains are among the most powerful natural gradients for testing ecological and evolutionary responses of biota to environmental influences because differences in climate and plant structure occur over short spatial scales. We describe the spatiotemporal distribution patterns and drives of fruit‐feeding butterfly diversity in the mountainous region of Serra do Cipó, Minas Gerais, Brazil. Seven elevations from 822 to 1,388 m a.s.l. were selected for evaluating the effects of abiotic factors and vegetation characteristics on butterfly diversity. A total of 44 fruit‐feeding butterfly species were recorded in a two‐year study. Species richness (local and regional) of fruit‐feeding butterflies decreased with increasing elevation. The interaction between temperature or humidity and precipitation influenced the abundance and β‐diversity of butterflies in the elevation gradient, whereas β‐diversity decreased with increasing plant richness. Butterfly richness (local and regional) and β‐diversity varied with the sampling period, with fewer species in July (2012 and 2013), the dry period, as expected for Neotropical insects. β‐Diversity in space and time was due to species replacement (turnover), indicating that butterfly composition differs throughout the mountain and over time. In summary, climate and plant richness largely influence butterfly diversity in the elevational gradient. Climatic changes in conjunction with increasing anthropic impacts on mountainous regions of southeast Brazil will likely influence the community of mountaintop butterflies in the Espinhaço Mountain Range. Abstract in Portuguese is available with online material.  相似文献   

8.
孙雪娇  常顺利  张毓涛  李吉玫 《生态学报》2018,38(14):4994-5005
植物功能性状是能够将植物个体特征、群落结构和生态系统功能结合起来的良好载体,但关于在环境梯度上如何通过植物功能性状的连续变化来构建群落、以及植物功能性状如何反映生态系统功能等问题尚有较多疑问。为探讨天山森林植物功能性状与其碳库在海拔梯度上的联系,分析了14个群落尺度上的植物功能性状指标和各组分碳密度沿海拔的变化规律及二者之间的关系。结果表明:(1)受海拔梯度上环境因子的影响,群落尺度上植物功能性状和碳密度的垂直分布并不一致:随海拔升高,叶片碳氮比(C/N)逐渐上升,叶片碳含量(C_(leaf))、比根长(SRL)和植株高度(H)升高后降低,叶绿素含量(Chl)、细根磷含量(P_(root))、叶片氮磷比(N/P)逐渐下降,细根碳含量(C_(root))先升高后趋于平缓,细根氮含量(N_(root))先下降后又有所回升,叶片氮含量(N_(leaf))、木质素含量(LLC)、叶干物质含量(LDMC)、细根干物质含量(RDMC)在各海拔段间无显著差异;(2)比根长(SRL)和植株高度(H)通过影响资源的获取和利用,C与P通过对养分的限制和在器官中的分配,从而影响植被光合作用,与天山森林碳密度显著相关;高木质素含量(LLC)导致植物残体分解速率变慢而与土壤碳密度(SCD)和群落总碳密度(TCD)呈显著负相关关系。随海拔升高,植被碳密度(VCD)先升后降,土壤碳密度(SCD)和总碳密度(TCD)逐渐升高。植物功能性状与环境因子和森林的结构功能相互作用、相互影响,三者之间的关系还需在大尺度上进一步验证。  相似文献   

9.
气候变化和大规模的生态恢复使中国北方旱区植被发生了显著变化,量化气候变化和人类活动对植被动态的相对贡献,对于旱区生态系统管理和应对未来气候变化具有重要意义。目前,中国北方旱区植被变化影响因素的时间动态(2000年大规模生态恢复工程实施前后)和空间异质性(沿干旱梯度)仍需进一步的定量研究。基于多源数据,采用趋势分析、偏相关分析和随机森林模型等方法,分析了1981-2018年中国北方旱区气候和植被的时空变化规律,量化了2000年前后气候变化和人类活动对植被动态的相对贡献并分析其在干旱梯度上的空间差异性。结果表明:(1)1981-2018年期间,中国北方旱区的叶面积指数(LAI)平均增加速率为(0.0037±0.0443) a-1,且增加速率沿干旱梯度增大。2000年前仅10.46%(P<0.05)的地区显著变绿,而2000年后达到36.84%,且植被变绿主要归因于非树木植被。(2)2000年后降水对植被变绿的正效应在不同干旱梯度均增加,而在半干旱区和亚湿润干旱区,温度对植被变绿由正向促进转为负向抑制,而辐射在干旱区由负效应转向正效应。(3)2000年前后,气候变化均主导着植被的动态,贡献率分别为96.07%和73.72%,人类活动的贡献在2000年后进一步增强(从3.93%增加到26.28%),且沿着干旱梯度而增加,其中人类活动对植被变绿的贡献在半干旱地区增加最显著(+0.0289 m2 m-2 a-1,P<0.05)。研究结果可为未来气候变化下中国北方旱区的植被恢复和可持续发展提供科学依据。  相似文献   

10.
Increases in atmospheric carbon dioxide (CO2) concentrations are expected to lead to increases in the rate of tree biomass accumulation, at least temporarily. On the one hand, trees may simply grow faster under higher CO2 concentrations, preserving the allometric relations that prevailed under lower CO2 concentrations. Alternatively, the allometric relations themselves may change. In this study, the effects of elevated CO2 (eCO2) on tree biomass and allometric relations were jointly assessed. Over 100 trees, grown at Duke Forest, NC, USA, were harvested from eight plots. Half of the plots had been subjected to CO2 enrichment from 1996 to 2010. Several subplots had also been subjected to nitrogen fertilization from 2005 to 2010. Allometric equations were developed to predict tree height, stem volume, and aboveground biomass components for loblolly pine (Pinus taeda L.), the dominant tree species, and broad‐leaved species. Using the same diameter‐based allometric equations for biomass, it was estimated that plots with eCO2 contained 21% more aboveground biomass, consistent with previous studies. However, eCO2 significantly affected allometry, and these changes had an additional effect on biomass. In particular, P. taeda trees at a given diameter were observed to be taller under eCO2 than under ambient CO2 due to changes in both the allometric scaling exponent and intercept. Accounting for allometric change increased the treatment effect of eCO2 on aboveground biomass from a 21% to a 27% increase. No allometric changes for the nondominant broad‐leaved species were identified, nor were allometric changes associated with nitrogen fertilization. For P. taeda, it is concluded that eCO2 affects allometries, and that knowledge of allometry changes is necessary to accurately compute biomass under eCO2. Further observations are needed to determine whether this assessment holds for other taxa.  相似文献   

11.
The ITE Edinburgh Forest Model, which describes diurnal and seasonal changes in the pools and fluxes of C, N and water in a fully coupled forest–soil system, was parametrized to simulate a managed conifer plantation in upland Britain. The model was used to examine (i) the transient effects on forest growth of an IS92a scenario of increasing [CO2] and temperature over two future rotations, and (ii) the equilibrium (sustainable) effects of all combinations of increases in [CO2] from 350 to 550 and 750 μmol mol?1, mean annual temperature from 7.5 to 8.5 and 9.5°C and annual inputs of 20 or 40 kg N ha?1. Changes in underlying processes represented in the model were then used to explain the responses. Eight conclusions were supported by the model for this forest type and climate.
  • 1 Increasing temperatures above 3°C alone may cause forest decline owing to water stress.
  • 2 Elevated [CO2] can protect trees from water stress that they may otherwise suffer in response to increased temperature.
  • 3 In N-limiting conditions, elevated [CO2] can increase allocation to roots with little increase in leaf area, whereas in N-rich conditions elevated [CO2] may not increase allocation to roots and generally increases leaf area.
  • 4 Elevated [CO2] can decrease water use by forests in N-limited conditions and increase water use in N-rich conditions.
  • 5 Elevated [CO2] can increase forest productivity even in N-limiting conditions owing to increased N acquisition and use efficiency.
  • 6 Rising temperatures (along with rising [CO2]) may increase or decrease forest productivity depending on the supply of N and changes in water stress.
  • 7 Gaseous losses of N from the soil can increase or decrease in response to elevated [CO2] and temperature.
  • 8 Projected increases in [CO2] and temperature (IS92a) are likely to increase net ecosystem productivity and hence C sequestration in temperate forests.
  相似文献   

12.
Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir   总被引:2,自引:0,他引:2  
The effects of elevated CO2 and temperature on principal carbon constituents (PCC) and C and N allocation between needle, woody (stem and branches) and root tissue of Pseudotsuga menziesii Mirb. Franco seedlings were determined. The seedlings were grown in sun‐lit controlled‐environment chambers that contained a native soil. Chambers were controlled to reproduce ambient or ambient +180 ppm CO2 and either ambient temperature or ambient +3.5 °C for 4 years. There were no significant CO2 × temperature interactions; consequently the data are presented for the CO2 and temperature effects. At the final harvest, elevated CO2 decreased the nonpolar fraction of the PCC and increased the polar fraction and amount of sugars in the needles. In contrast, elevated temperature increased the nonpolar fraction of the PCC and decreased sugars in needles. There were no CO2 or temperature effects on the PCC fractions in the woody tissue or root tissue. Elevated CO2 and temperature had no significant effects on the C content of any of the plant tissues or fractions. In contrast, the foliar N content declined under elevated CO2 and increased under elevated temperature; there were no significant effects in other tissues. The changes in the foliar N concentrations were in the cellulose and lignin fractions, the fractions, which contain protein, and are the consequences of changes in N allocation under the treatments. These results indicate reallocation of N among plant organs to optimize C assimilation, which is mediated via changes in the selectivity of Rubisco and carbohydrate modulation of gene expression.  相似文献   

13.
Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.  相似文献   

14.
To fully understand how soil respiration is partitioned among its component fluxes and responds to climate, it is essential to relate it to belowground carbon allocation, the ultimate carbon source for soil respiration. This remains one of the largest gaps in knowledge of terrestrial carbon cycling. Here, we synthesize data on gross and net primary production and their components, and soil respiration and its components, from a global forest database, to determine mechanisms governing belowground carbon allocation and their relationship with soil respiration partitioning and soil respiration responses to climatic factors across global forest ecosystems. Our results revealed that there are three independent mechanisms controlling belowground carbon allocation and which influence soil respiration and its partitioning: an allometric constraint; a fine‐root production vs. root respiration trade‐off; and an above‐ vs. belowground trade‐off in plant carbon. Global patterns in soil respiration and its partitioning are constrained primarily by the allometric allocation, which explains some of the previously ambiguous results reported in the literature. Responses of soil respiration and its components to mean annual temperature, precipitation, and nitrogen deposition can be mediated by changes in belowground carbon allocation. Soil respiration responds to mean annual temperature overwhelmingly through an increasing belowground carbon input as a result of extending total day length of growing season, but not by temperature‐driven acceleration of soil carbon decomposition, which argues against the possibility of a strong positive feedback between global warming and soil carbon loss. Different nitrogen loads can trigger distinct belowground carbon allocation mechanisms, which are responsible for different responses of soil respiration to nitrogen addition that have been observed. These results provide new insights into belowground carbon allocation, partitioning of soil respiration, and its responses to climate in forest ecosystems and are, therefore, valuable for terrestrial carbon simulations and projections.  相似文献   

15.
The atmospheric CO2 concentration ([CO2]) is rapidly increasing, and this may have substantial impact on how plants allocate metabolic resources. A thorough understanding of allocation priorities can be achieved by modifying [CO2] over a large gradient, including low [CO2], thereby altering plant carbon (C) availability. Such information is of critical importance for understanding plant responses to global environmental change. We quantified the percentage of daytime whole‐plant net assimilation (A) allocated to night‐time respiration (R), structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during 8 weeks of vegetative growth in winter wheat (Triticum aestivum) growing at low, ambient and elevated [CO2] (170, 390 and 680 ppm). R/A remained relatively constant over a large gradient of [CO2]. However, with increasing C availability, the fraction of assimilation allocated to biomass (SG + NSC + SMs), in particular NSC and SMs, increased. At low [CO2], biomass and NSC increased in leaves but decreased in stems and roots, which may help plants achieve a functional equilibrium, that is, overcome the most severe resource limitation. These results reveal that increasing C availability from rising [CO2] releases allocation constraints, thereby allowing greater investment into long‐term survival in the form of NSC and SMs.  相似文献   

16.
Northeast China Transect (NECT), one of the fifteen International Biosphere-Geosphere Programme (IGBP) terrestrial transects, has been established for 10 years by Prof. Zhang Xin-Shi, through a core project of the IGBP - the Global Change and Terrestrial Ecosystems (GCTE). This transect is located in the mid-latitude semi-arid region, ranging 42-46°N latitude and 110-132癊 longitude. The primary driving force for global change is precipitation and the secondary one is land use intensity. Research progresses have been performed during the past decade in the following aspects: ecological database development, climate and its variability, ecophysiological response of plants to environments, vegetation and landscape changes, biodiversity patterns and their changes, plant functional types and traits with relation to climatic gradient, productivity and carbon dynamics, pollen-vegetation relationship, trace gas emissions, land use and land cover changes, as well as biogeographical and biogeochemical modelling. In order to achieve the higher level of integrated research, the NECT needs the consistent basic data sets within the same framework, further field experiments and observations, integrated simulations of vegetation structure, process and function from patch, landscape to biome scales, intercomparisons of results and simulations within the transect and to other IGBP transects, multidisciplinary research, national and international co-ordinates, and full scientific plan and implementation strategy.  相似文献   

17.
Accelerated terrestrial ecosystem carbon turnover and its drivers   总被引:1,自引:0,他引:1  
The terrestrial carbon cycle has been strongly influenced by human‐induced CO2 increase, climate change, and land use change since the industrial revolution. These changes alter the carbon balance of ecosystems through changes in vegetation productivity and ecosystem carbon turnover time (τeco). Even though numerous studies have drawn an increasingly clear picture of global vegetation productivity changes, global changes in τeco are still unknown. In this study, we analyzed the changes of τeco between the 1860s and the 2000s and their drivers, based on theory of dynamic carbon cycle in non‐steady state and process‐based ecosystem model. Results indicate that τeco has been reduced (i.e., carbon turnover has accelerated) by 13.5% from the 1860s (74 years) to the 2000s (64 years), with reductions of 1 year of carbon residence times in vegetation (rveg) and of 9 years in soil (rsoil). Additionally, the acceleration of τeco was examined at biome scale and grid scale. Among different driving processes, land use change and climate change were found to be the major drivers of turnover acceleration. These findings imply that carbon fixed by plant photosynthesis is being lost from ecosystems to the atmosphere more quickly over time, with important implications for the climate‐carbon cycle feedbacks.  相似文献   

18.
Optimal nitrogen allocation controls tree responses to elevated CO2   总被引:1,自引:0,他引:1  
Despite the abundance of experimental data, understanding of forest responses to elevated CO2 is limited. Here I show that a key to previously unexplained production and leaf area responses lies in the interplay between whole-plant nitrogen (N) allocation and leaf photosynthesis. A simple tree growth model, controlled by net growth maximization through optimization of leaf area index (LAI) and plant N, is used to analyse CO2 responses in both young, expanding and closed, steady-state canopies. The responses are sensitive to only two independent parameters, the photosynthetic capacity per leaf N (a) and the fine-root N:leaf N ratio. The model explains observed CO2 responses of photosynthesis, production and LAI in four forest free air CO2 enrichment (FACE) experiments. Insensitivity of LAI except at low LAI, increase in light-use efficiency, and photosynthetic down-regulation (as a result of reduced leaf N per area) at elevated CO2 are all explained through the combined effects on a and leaf quantum efficiency. The model bridges the gap between the understanding of leaf-level and plant-level responses and provides a transparent framework for interpreting and linking structural (LAI) and functional (net primary production (NPP):gross primary production (GPP) ratio, light-use efficiency, photosynthetic down-regulation) responses to elevated CO2.  相似文献   

19.
The climate has important influences on the distribution and structure of forest ecosystems, which may lead to vital feedback to climate change. However, much of the existing work focuses on the changes in carbon fluxes or water cycles due to climate change and/or atmospheric CO2, and few studies have considered how and to what extent climate change and CO2 influence the ecosystem structure (e.g., fractional coverage change) and the changes in the responses of ecosystems with different characteristics. In this work, two dynamic global vegetation models (DGVMs): IAP‐DGVM coupled with CLM3 and CLM4‐CNDV, were used to investigate the response of the forest ecosystem structure to changes in climate (temperature and precipitation) and CO2 concentration. In the temperature sensitivity tests, warming reduced the global area‐averaged ecosystem gross primary production in the two models, which decreased global forest area. Furthermore, the changes in tree fractional coverage (ΔFtree; %) from the two models were sensitive to the regional temperature and ecosystem structure, i.e., the mean annual temperature (MAT; °C) largely determined whether ΔFtree was positive or negative, while the tree fractional coverage (Ftree; %) played a decisive role in the amplitude of ΔFtree around the globe, and the dependence was more remarkable in IAP‐DGVM. In cases with precipitation change, Ftree had a uniformly positive relationship with precipitation, especially in the transition zones of forests (30% < Ftree < 60%) for IAP‐DGVM and in semiarid and arid regions for CLM4‐CNDV. Moreover, ΔFtree had a stronger dependence on Ftree than on the mean annual precipitation (MAP; mm/year). It was also demonstrated that both models captured the fertilization effects of the CO2 concentration.  相似文献   

20.
Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA), with little change in either aboveground plant respiration (APR) or GPP. Alternatively, increases in nutrient supply may increase GPP, with the quantity of GPP allocated aboveground increasing more steeply than the quantity of GPP allocated belowground. To examine the effects of an elevated nutrient supply on the C allocation patterns in forests, we determined whole‐ecosystem C budgets in unfertilized plots of Eucalyptus saligna and in adjacent plots receiving regular additions of 65 kg N ha?1, 31 kg P ha?1, 46 kg K ha?1, and macro‐ and micronutrients. We measured the absolute flux of C allocated to the components of GPP (ANPP, TBCA and APR), as well as the fraction of GPP allocated to these components. Fertilization dramatically increased GPP. Averaged over 3 years, GPP in the fertilized plots was 34% higher than that in the unfertilized controls (3.95 vs. 2.95 kg C m?2 yr?1). Fertilization‐related increases in GPP were allocated entirely aboveground – ANPP was 85% higher and APR was 57% higher in the fertilized than in the control plots, while TBCA did not differ significantly between treatments. Carbon use efficiency (NPP/GPP) was slightly higher in the fertilized (0.53) compared with the control plots (0.51). Overall, fertilization increased ANPP and APR, and these increases were related to a greater GPP and an increase in the fraction of GPP allocated aboveground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号