首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Pancreatic cancer (PC) remains a primary cause of cancer‐related deaths worldwide. Existing literature has highlighted the oncogenic role of microRNA‐27a (miR‐27a) in multiple cancers. Hence, the current study aimed to clarify the potential therapeutic role of PC cell–derived exosomal miR‐27a in human microvascular endothelial cell (HMVEC) angiogenesis in PC. Initially, differentially expressed genes (DEGs) and miRs related to PC were identified by microarray analysis. Microarray analysis provided data predicting the interaction between miR‐27a and BTG2 in PC, which was further verified by the elevation or depletion of miR‐27a. Next, the expression of miR‐27a and BTG2 in the PC tissues was quantified. HMVECs were exposed to exosomes derived from PC cell line PANC‐1 to investigate the effects associated with PC cell–derived exosomes carrying miR‐27a on HMVEC proliferation, invasion and angiogenesis. Finally, the effect of miR‐27a on tumorigenesis and microvessel density (MVD) was analysed after xenograft tumour inoculation in nude mice. Our results revealed that miR‐27a was highly expressed, while BTG2 was poorly expressed in both PC tissues and cell lines. miR‐27a targeted BTG2. Moreover, miR‐27a silencing inhibited PC cell proliferation and invasion, and promoted apoptosis through the elevation of BTG2. The in vitro assays revealed that PC cell–derived exosomes carrying miR‐27a stimulated HMVEC proliferation, invasion and angiogenesis, while this effect was reversed in the HMVECs cultured with medium containing GW4869‐treated PANC‐1 cells. Furthermore, in vivo experiment revealed that miR‐27a knockdown suppressed tumorigenesis and MVD. Taken together, cell‐derived exosomes carrying miR‐27a promotes HMVEC angiogenesis via BTG2 in PC.  相似文献   

6.
7.
8.
Iron is suspected to be involved in the induction and/or progression of various human tumors. The present study was designed to investigate the effects of iron on endothelial cells, keeping in mind that the homeostasis of microvessels plays a critical role in neo-angiogenesis. Applying a model of human dermal microvascular endothelial cell terminal differentiation and death induced by serum deprivation, we found that iron salts (iron chloride and ferric nitrilotriacetate) provided a survival advantage to endothelial cells. Using immunohistochemistry and Western Blot analysis, we found that the extended cellular life span induced by iron was paralleled by an increase of Bcl-2 protein expression. Taken together, these observations suggest that iron may give a survival advantage to endothelial cells and represent a novel mechanism through which iron may contribute to tumorigenesis.  相似文献   

9.
Interleukin‐8 (CXCL8, IL‐8) is a proinflammatory chemokine important for the regulation of inflammatory and immune responses via its interaction with G‐protein coupled receptors, including CXC receptor 1 (CXCR1). CXCL8 exists as both a monomer and as a dimer at physiological concentrations, yet the molecular basis of CXCL8 interaction with its receptor as well as the importance of CXCL8 dimer formation remain poorly characterized. Although several biological studies have indicated that both the CXCL8 monomer and dimer are active, biophysical studies have reported conflicting results regarding the binding of CXCL8 to CXCR1. To clarify this problem, we expressed and purified a peptide (hCXCR1pep) corresponding to the N‐terminal region of human CXCR1 (hCXCR1) and utilized nuclear magnetic resonance (NMR) spectroscopy to interrogate the binding of wild‐type CXCL8 and a previously reported mutant (CXCL8M) that stabilizes the monomeric form. Our data reveal that the CXCL8 monomer engages hCXCR1pep with a slightly higher affinity than the CXCL8 dimer, but that the CXCL8 dimer does not dissociate upon binding hCXCR1pep. These investigations also showed that CXCL8 is dynamic on multiple timescales, which may help explain the versatility in this interleukin for engaging its target receptors.  相似文献   

10.
11.
The aim of the present study is to investigate the role of miR-21-5p in angiogenesis of human retinal microvascular endothelial cells (HRMECs). HRMECs were incubated with 5 mM glucose, 30 mM glucose or 30 mM mannitol for 24 h, 48 h or 72 h. Then, HRMECs exposed to 30 mM glucose were transfected with miR-21-5p inhibitor. We found that high glucose increased the expression of miR-21-5p, VEGF, VEGFR2 and cell proliferation activity. Inhibition of miR-21-5p reduced high glucose-induced proliferation, migration, tube formation of HRMECs, and reversed the decreased expression of maspin as well as the abnormal activation of PI3K/AKT and ERK pathways. Down-regulation of maspin by siRNA significantly increased the activities of PI3K/AKT and ERK pathways. In conclusion, inhibition of miR-21-5p could suppress high glucose-induced proliferation and angiogenesis of HRMECs, and these effects may partly dependent on the regulation of PI3K/AKT and ERK pathways via its target protein maspin.  相似文献   

12.
Angiogenesis plays an important role in many pathological processes. Identification of novel anti‐angiogenic agents will provide new insights into the mechanisms for angiogenesis as well as potential lead compounds for developing new drugs. In the present study, a series of resveratrol methylated derivatives have been synthesized and screened. We found trans‐3,4‐dimethoxystilbene (3,4‐DMS) with the fullest potential to develop as an anti‐angiogenic agent. In vitro and in vivo analyses suggested that 3,4‐DMS could effectively inhibit endothelial cell proliferation, migration, tube formation, and endogenous neovascularization. Our results showed that 3,4‐DMS exerted its anti‐angiogenic effect likely through induction of endothelial cell apoptosis via a pathway involving p53, Bax, cytochrome c, and caspase proteases. Moreover, 3,4‐DMS also induced macroautophagy in endothelial cells through activation of AMPK and the downstream inhibition of mTOR signaling pathway. Further studies indicated that intracellular calcium ([Ca2+]i) might bridge the 3,4‐DMS‐induced apoptosis and macroautophagy through modulating reactive oxygen species (ROS) levels in endothelial cells. Combination of 3,4‐DMS with inhibitor of autophagy, such as 3‐methyladenine (3‐MA) and autophagy‐related gene (ATG) 5 small interfering RNA (siRNA), potentiated the pro‐apoptotic and anti‐angiogenic effects of 3,4‐DMS. Our study provides a novel angiogenic inhibitor and a useful tool in exploring the molecular mechanisms for the crosstalk between apoptosis and macroautophagy in endothelial cells. 3,4‐DMS could be served as a potential lead compound for developing a class of new drugs targeting angiogenesis‐related diseases. J. Cell. Biochem. 114: 697–707, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Thiazolidinediones, the antidiabetic agents such as ciglitazone, has been proved to be effective in limiting atherosclerotic events. However, the underlying mechanism remains elucidative. Ox‐LDL receptor‐1 (LOX‐1) plays a central role in ox‐LDL‐mediated atherosclerosis via endothelial nitric oxide synthase (eNOS) uncoupling and nitric oxide reduction. Therefore, we tested the hypothesis that ciglitazone, the PPARγ agonist, protected endothelial cells against ox‐LDL through regulating eNOS activity and LOX‐1 signalling. In the present study, rat microvascular endothelial cells (RMVECs) were stimulated by ox‐LDL. The impact of ciglitazone on cell apoptosis and angiogenesis, eNOS expression and phosphorylation, nitric oxide synthesis and related AMPK, Akt and VEGF signalling pathway were observed. Our data showed that both eNOS and Akt phosphorylation, VEGF expression and nitric oxide production were significantly decreased, RMVECs ageing and apoptosis increased after ox‐LDL induction for 24 hrs, all of which were effectively reversed by ciglitazone pre‐treatment. Meanwhile, phosphorylation of AMP‐activated protein kinase (AMPK) was suppressed by ox‐LDL, which was also prevented by ciglitazone. Of interest, AMPK inhibition abolished ciglitazone‐mediated eNOS function, nitric oxide synthesis and angiogenesis, and increased RMVECs ageing and apoptosis. Further experiments showed that inhibition of PPARγ significantly suppressed AMPK phosphorylation, eNOS expression and nitric oxide production. Ciglitazone‐mediated angiogenesis and reduced cell ageing and apoptosis were reversed. Furthermore, LOX‐1 protein expression in RMVECs was suppressed by ciglitazone, but re‐enhanced by blocking PPARγ or AMPK. Ox‐LDL‐induced suppression of eNOS and nitric oxide synthesis were largely prevented by silencing LOX‐1. Collectively, these data demonstrate that ciglitazone‐mediated PPARγ activation suppresses LOX‐1 and moderates AMPK/eNOS pathway, which contributes to endothelial cell survival and function preservation.  相似文献   

14.
Neuroinflammatory disorders such as Alzheimer's and Parkinson's diseases are characterised by chronic inflammation and loss of vascular integrity. Bradykinin 1 receptor (B1R) activation has been implicated in many neuroinflammatory diseases, but the contribution of B1R to inflammation and vascular breakdown is yet to be determined. As a result, the present study evaluated the effect of B1R stimulation using Des‐Arg‐9‐BK on the cytokine profile and junctional properties of human cerebral microvascular endothelial cells (hCMVECs). Results showed that stimulation of B1R receptors increased secretion of pro‐inflammatory cytokines, interleukin‐6 (IL‐6), IL‐8, intracellular adhesion molecule‐1 (ICAM‐1), vascular cell adhesion molecule‐1 (VCAM‐1) and monocyte chemoattractant protein‐1 (MCP‐1), but decreased the expression of vascular endothelial growth factor (VEGF), a cytokine and growth factor required for maintenance of the vasculature. B1R stimulation also resulted in the loss of occludin expression at tight junctions with no change in VE‐cadherin expression. There was also a significant increase in permeability to Evans blue albumin, suggesting an increase of vascular permeability. Taken together, these results suggest that B1R activation that occurs in neuroinflammatory diseases may contribute to both the inflammation and loss of blood‐brain barrier integrity that is characteristic of these diseases.  相似文献   

15.
Angiogenesis plays an important role in the development of neoplastic diseases such as cancer. Resveratrol and its derivatives exert antiangiogenic effects, but the mechanisms of their actions remain unclear. The aim of this study was to evaluate the antiangiogenic activity of resveratrol and its derivative trans‐3,5,4′‐trimethoxystilbene in vitro using human umbilical vein endothelial cells (HUVECs) and in vivo using transgenic zebrafish, and to clarify their mechanisms of action in zebrafish by gene expression analysis of the vascular endothelial growth factor (VEGF) receptor (VEGFR2/KDR) and cell‐cycle analysis. trans‐3,5,4′‐Trimethoxystilbene showed significantly more potent antiangiogenic activity than that of resveratrol in both assays. In zebrafish, trans‐3,5,4′‐trimethoxystilbene caused intersegmental vessel regression and downregulated VEGFR2 mRNA expression. Trans‐3,5,4′‐trimethoxystilbene also induced G2/M cell‐cycle arrest, most specifically in endothelial cells of zebrafish embryos. We propose that the antiangiogenic and vascular‐targeting activities of trans‐3,5,4′‐trimethoxystilbene result from the downregulation of VEGFR2 expression and cell‐cycle arrest at G2/M phase. J. Cell. Biochem. 109: 339–346, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Bisphosphonates (BPs) are known to affect bone homeostasis and also to have anti-angiogenic properties. Because of the intimate relationship between angiogenesis and osteogenesis, this study analysed the effects of Alendronate (AL) and Zoledronate (ZL) in the expression of endothelial and osteogenic genes on interacting endothelial and mesenchymal stem cells, an issue that was not previously addressed. Alendronate and ZL, 10−12–10−6 M, were evaluated in a direct co-culture system of human dermal microvascular endothelial cells (HDMEC) and human bone marrow mesenchymal stem cells (HMSC), over a period of 14 days. Experiments with the respective monocultures were run in parallel. Alendronate and ZL caused an initial dose-dependent stimulation in the cell proliferation in the monocultures and co-cultures, and did not interfere with their cellular organization. In HDMEC monocultures, the expression of the endothelial genes CD31, VE-cadherin and VEGFR2 was down-regulated by AL and ZL. In HMSC monocultures, the BPs inhibited VEGF expression, but up-regulated the expression of the osteogenic genes alkaline phosphatase (ALP), bone morphogenic protein-2 (BMP-2) and osteocalcin (OC) and, to a greater extent, osteoprotegerin (OPG), a negative regulator of the osteoclastic differentiation, and increased ALP activity. In co-cultured HDMEC/HMSC, AL and ZL decreased the expression of endothelial genes but elicited an earlier and sustained overexpression of ALP, BMP-2, OC and OPG, compared with the monocultured cells; they also induced ALP activity. This study showed for the first time that AL and ZL greatly induced the osteogenic gene expression on interacting endothelial and mesenchymal stem cells.  相似文献   

17.
Cell‐based therapy using stem cells has emerged as one of the pro‐angiogenic methods to enhance blood vessel growth and sprouting in ischaemic conditions. This study investigated the endogenous and induced angiogenic characteristics of hCDSC (human chorion‐derived stem cell) using QPCR (quantitative PCR) method, immunocytochemistry and fibrin‐matrigel migration assay. The results showed that cultured hCDSC endogenously expressed angiogenic–endogenic‐associated genes (VEGF, bFGF, PGF, HGF, Ang‐1, PECAM‐1, eNOS, Ve‐cad, CD34, VEGFR‐2 and vWF), with significant increase in mRNA levels of PGF, HGF, Ang‐1, eNOS, VEGFR‐2 and vWF following induction by bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial growth factor). These enhanced angiogenic properties suggest that induced hCDSC provides a stronger angiogenic effect for the treatment of ischaemia. After angiogenic induction, hCDSC showed no reduction in the expression of the stemness genes, but had significantly higher levels of mRNA of Oct‐4, Nanog (3), FZD9, ABCG‐2 and BST‐1. The induced cells were positive for PECAM‐1 (platelet/endothelial cell adhesion molecule 1) and vWF (von Willebrand factor) with immunocytochemistry staining. hCDSC also showed endothelial migration behaviour when cultured in fibrin‐matrigel construct and were capable of forming vessels in vivo after implanting into nude mice. These data suggest that hCDSC could be the cells of choice in the cell‐based therapy for pro‐angiogenic purpose.  相似文献   

18.
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N‐sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N‐sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2‐mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM‐induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N‐sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2‐mediated cell–cell communication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号