共查询到20条相似文献,搜索用时 15 毫秒
1.
Rémy Beugnon;Nolwenn Le Guyader;Alexandru Milcu;Jonathan Lenoir;Jérémy Puissant;Xavier Morin;Stephan Hättenschwiler; 《Global Change Biology》2024,30(3):e17214
Changes in climate and biodiversity are widely recognized as primary global change drivers of ecosystem structure and functioning, also affecting ecosystem services provided to human populations. Increasing plant diversity not only enhances ecosystem functioning and stability but also mitigates climate change effects and buffers extreme weather conditions, yet the underlying mechanisms remain largely unclear. Recent studies have shown that plant diversity can mitigate climate change (e.g. reduce temperature fluctuations or drought through microclimatic effects) in different compartments of the focal ecosystem, which as such may contribute to the effect of plant diversity on ecosystem properties and functioning. However, these potential plant diversity-induced microclimate effects are not sufficiently understood. Here, we explored the consequences of climate modulation through microclimate modification by plant diversity for ecosystem functioning as a potential mechanism contributing to the widely documented biodiversity–ecosystem functioning (BEF) relationships, using a combination of theoretical and simulation approaches. We focused on a diverse set of response variables at various levels of integration ranging from ecosystem-level carbon exchange to soil enzyme activity, including population dynamics and the activity of specific organisms. Here, we demonstrated that a vegetation layer composed of many plant species has the potential to influence ecosystem functioning and stability through the modification of microclimatic conditions, thus mitigating the negative impacts of climate extremes on ecosystem functioning. Integrating microclimatic processes (e.g. temperature, humidity and light modulation) as a mechanism contributing to the BEF relationships is a promising avenue to improve our understanding of the effects of climate change on ecosystem functioning and to better predict future ecosystem structure, functioning and services. In addition, microclimate management and monitoring should be seen as a potential tool by practitioners to adapt ecosystems to climate change. 相似文献
2.
Raúl García‐Valds Alba Estrada Regan Early Veiko Lehsten Xavier Morin 《Global Ecology and Biogeography》2020,29(8):1360-1372
3.
以东北东部山区4种管理梯度下相同演替年龄的森林群落为研究对象,包括天然次生林(WB)及在其冠下人工更新红松(Pinus koraiensis)的混交林(MA),并对MA进行透光抚育形成的择伐红松林(SK)和对SK适时疏伐形成的疏伐红松林(KT),其管理程度依次增强。采用样地清查结合异速生长方程法量化植被碳密度(VC)及其各组分碳密度;测定多样性、针阔比等群落特征和土壤氮、磷等养分特征,探究森林管理对植被碳密度的影响。结果表明:演替先锋优势种(PI)、演替后期优势种(LT)和林下植被层(UC)的碳密度在4种管理措施间存在显著差异,其中,LT由WB的9.39 t/hm2增加到KT的107.02 t/hm2。但是,伴生种的碳密度在4种管理措施间差异不显著,其碳密度波动范围为8.41—14.89 t/hm2。VC随森林管理强度显著提升,其波动范围为96.34—135.40 t/hm2,VC年平均增长量波动范围为1.50—2.11 t hm-2 a-1,且在管理措施间存在显著差异。PI、LT和UC占植被总碳密度的比例在4种管理措施间存在显著差异,其中PI的占比随着上述管理措施逐渐降低,而LT的占比显著升高(由WB的14.0%提升到KT的82.2%);植被残体与活体生物量碳密度之比以及地下与地上的生物量碳密度之比在4种管理措施间均存在显著差异,其比值的波动范围依次分别为0.05—0.13和0.24—0.30。乔木层碳密度与树种多样性存在显著负相关,而林下植被层碳密度与树种多样性呈显著正相关。并且VC与土壤氮储量、磷储量无显著相关性。这表明,在同一气候条件下,群落特征和树种组成是决定植被碳密度分异的重要因素,并且通过提升后期优势种占比的积极森林管理提升了东北次生林植被的碳密度和碳固持能力。 相似文献
4.
《Biological reviews of the Cambridge Philosophical Society》2018,93(1):439-456
Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more‐diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long‐term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. 相似文献
5.
Bettina Ohse Carolin Seele Frédéric Holzwarth Christian Wirth 《Ecology and evolution》2017,7(17):6779-6789
Browsing of tree saplings by deer hampers forest regeneration in mixed forests across Europe and North America. It is well known that tree species are differentially affected by deer browsing, but little is known about how different facets of diversity, such as species richness, identity, and composition, affect browsing intensity at different spatial scales. Using forest inventory data from the Hainich National Park, a mixed deciduous forest in central Germany, we applied a hierarchical approach to model the browsing probability of patches (regional scale) as well as the species‐specific proportion of saplings browsed within patches (patch scale). We found that, at the regional scale, the probability that a patch was browsed increased with certain species composition, namely with low abundance of European beech (Fagus sylvatica L.) and high abundance of European ash (Fraxinus excelsior L.), whereas at the patch scale, the proportion of saplings browsed per species was mainly determined by the species’ identity, providing a “preference ranking” of the 11 tree species under study. Interestingly, at the regional scale, species‐rich patches were more likely to be browsed; however, at the patch scale, species‐rich patches showed a lower proportion of saplings per species browsed. Presumably, diverse patches attract deer, but satisfy nutritional needs faster, such that fewer saplings need to be browsed. Some forest stand parameters, such as more open canopies, increased the browsing intensity at either scale. By showing the effects that various facets of diversity, as well as environmental parameters, exerted on browsing intensity at the regional as well as patch scale, our study advances the understanding of mammalian herbivore–plant interactions across scales. Our results also indicate which regeneration patches and species are (least) prone to browsing and show the importance of different facets of diversity for the prediction and management of browsing intensity and regeneration dynamics. 相似文献
6.
1. We tested the species diversity–energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 × 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species–energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral. 相似文献
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 × 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species–energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral. 相似文献
7.
Chelse M. Prather Emily Rivest Megan Woltz Christopher P. Bloch Israel Del Toro Chuan‐Kai Ho John Kominoski T. A. Scott Newbold Sheena Parsons A. Joern 《Biological reviews of the Cambridge Philosophical Society》2013,88(2):327-348
The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate‐mediated services under a changing climate. 相似文献
8.
森林生态系统是地球陆地生态系统的主体,它具有很高的生物生产力和生物量以及丰富的生物多样性,对全球生态系统和人类经济社会发展起着至关重要和无可替代的作用。伴随着人口的不断增长和经济社会的迅猛发展,对森林资源和森林生态系统服务的需求不断高涨,而且人类对森林资源价值的认识也发生了很大程度的改变。推进森林资源可持续经营,增加森林总量、提高森林质量、增强生态功能,已成为中国林业可持续发展乃至推进中国生态文明建设和建设美丽中国的战略任务。本文全面综述了森林生态系统经营发展历程,分析了森林生态系统经营的现状和存在问题,在此基础上,提出整合基于生态系统管理与满足现代人类福祉对森林多重需求的新的森林生态系统经营理念,面向生态系统服务的森林生态系统经营理念是未来的发展趋势。森林经营发展战略表现为:1)从单纯的森林面积数量扩张,转变到提高单位面积的森林生产力和森林质量;2)从单一追求木材生产逐步转变为多目标经营,将森林林产品单一的经营目标转变为广泛的生态、经济和社会等多目标经营;3)森林经营重点从林分水平转变为森林景观的经营,强调森林景观的时空异质性和动态变化,权衡和协同多种生态系统的服务功能,倡导森林景观的多样性和连通性,提高森林与其它土地利用模式镶嵌构成的复合景观的可持续性和稳定性,增强森林生态系统对气候变化影响的适应能力;4)森林生态系统经营将从依赖传统经验的主观决策转变为信息化、数字化和智能化的决策,发展森林生态系统经营决策支持系统和森林景观恢复与空间经营规划系统。 相似文献
9.
森林管理是实现森林生产效益最大化的主要措施,是增加碳吸收以减缓气候变暖的关键手段,是调节区域水文循环的有效途径,是保护地以外实现生物多样性保护目标的重要补充。然而,追求单一生产功能的传统森林管理弱化了其他生态功能,并对森林景观结构和生物多样性产生负面影响。全球80%以上森林由于人类活动呈现不同程度退化进而影响人类福祉,森林管理需要优化以追求多维生态功能的协同共赢。当前,对于森林管理的生态效应仍有较多争论或未形成明确认识,可持续森林管理能否取得额外的气候效益仍有待确认,森林管理如何影响不同区域的水文生态功能仍未形成明确认识,不同类型森林管理或多或少、或正面或负面影响栖息地及不同种类生物多样性的强度和方向不明确。因此,森林管理的生态效应是一个值得深入探索的问题,未来需要深入量化不同管理措施对气候变化缓解、水文循环调节、生物多样性保护乃至提供其他生态功能的作用,将维持或提升生态功能及生物多样性作为可持续森林管理的一个重要目标,通过优化森林管理策略开展森林提质增效以获得最大收益。 相似文献
10.
Stephan Kambach Eric Allan Simon Bilodeau‐Gauthier David A. Coomes Josephine Haase Tommaso Jucker Georges Kunstler Sandra Müller Charles Nock Alain Paquette Fons van der Plas Sophia Ratcliffe Fabian Roger Paloma Ruiz‐Benito Michael Scherer‐Lorenzen Harald Auge Olivier Bouriaud Bastien Castagneyrol Jonas Dahlgren Lars Gamfeldt Herv Jactel Gerald Kndler Julia Koricheva Aleksi Lehtonen Bart Muys Quentin Ponette Nuri Setiawan Thomas Van de Peer Kris Verheyen Miguel A. Zavala Helge Bruelheide 《Ecology and evolution》2019,9(19):11254-11265
For decades, ecologists have investigated the effects of tree species diversity on tree productivity at different scales and with different approaches ranging from observational to experimental study designs. Using data from five European national forest inventories (16,773 plots), six tree species diversity experiments (584 plots), and six networks of comparative plots (169 plots), we tested whether tree species growth responses to species mixing are consistent and therefore transferrable between those different research approaches. Our results confirm the general positive effect of tree species mixing on species growth (16% on average) but we found no consistency in species‐specific responses to mixing between any of the three approaches, even after restricting comparisons to only those plots that shared similar mixtures compositions and forest types. These findings highlight the necessity to consider results from different research approaches when selecting species mixtures that should maximize positive forest biodiversity and functioning relationships. 相似文献
11.
W. S. Keeton M. Chernyavskyy G. Gratzer M. Main‐Knorn M. Shpylchak Y. Bihun 《Plant biosystems》2013,147(1):148-159
Abstract Temperate old‐growth forests are known to have ecological characteristics distinct from younger forests, but these have been poorly described for the remaining old‐growth Picea abies–Abies alba forests in the eastern Carpathian mountains. In addition, recent studies suggest that old‐growth forests may be more significant carbon sinks than previously recognized. This has stimulated interest in quantifying aboveground carbon stocks in primary forest systems. We investigated the structural attributes and aboveground biomass in two remnant old‐growth spruce–fir stands and compared these against a primary (never logged) mature reference stand. Our sites were located in the Gorgany Nature Reserve in western Ukraine. Overstory data were collected using variable radius plots; coarse woody debris was sampled along line intercept transects. Differences among sites were assessed using non‐parametric statistical analyses. Goodness‐of‐fit tests were used to evaluate the form of diameter distributions. The results strongly supported the hypothesis that old‐growth temperate spruce–fir forests have greater structural complexity compared to mature forests, including higher densities of large trees, more complex horizontal structure, and elevated aboveground biomass. The late‐successional sites we sampled exhibited rotated sigmoid diameter distributions; these may reflect natural disturbance dynamics. Old‐growth Carpathian spruce–fir forests store on average approximately 155–165 Mg ha?1 of carbon in aboveground tree parts alone. This is approximately 50% higher than mature stands. Given the scarcity of primary spruce–fir forests in the Carpathian region, remaining stands have high conservation value, both as habitat for late‐successional species and as carbon storage reservoirs. 相似文献
12.
Robbie A. Hember Werner A. Kurz Juha M. Metsaranta T. Andy Black Robert D. Guy Nicholas C. Coops 《Global Change Biology》2012,18(6):2026-2040
To understand how environmental changes have influenced forest productivity, stemwood biomass (B) dynamics were analyzed at 1267 permanent inventory plots, covering a combined 209 ha area of unmanaged temperate‐maritime forest in southwest British Columbia, Canada. Net stemwood production (ΔB) was derived from periodic remeasurements of B collected over a 40‐year measurement period (1959–1998) in stands ranging from 20 to 150 years old. Comparison between the integrated age response of net stemwood production, ΔB(A), and the age response of stemwood biomass, B(A), suggested a 58 ± 11% increase in ΔB between the first 40 years of the chronosequence period (1859–1898) and the measurement period. To estimate extrinsic forcing on ΔB, several different candidate models were developed to remove variation explained by intrinsic factors. All models exhibited temporal bias, with positive trends in (observed minus predicted) residual ΔB ranging between of 0.40 and 0.64% yr?1. Applying the same methods to stemwood growth (G) indicated residual increases ranging from 0.43 and 0.67% yr?1. Higher trend estimates corresponded with models that included site index (SI) as a predictor, which may reflect exaggeration of the age‐decline in SI tables. Choosing a model that excluded SI, suggested that ΔB increased by 0.40 ± 0.18% yr?1, while G increased by 0.43 ± 0.12% yr?1 over the measurement period. Residual G was significantly correlated with atmospheric carbon dioxide (CO2), temperature (T), and climate moisture index (CMI). However, models driven with climate and CO2, alone, could not simultaneously explain long‐term and measurement‐period trends without additional representation of indirect effects, perhaps reflecting compound interest on direct physiological responses to environmental change. Evidence of accelerating forest regrowth highlights the value of permanent inventories to detect and understand systematic changes in forest productivity caused by environmental change. 相似文献
13.
为了解生态修复政策对陕北地区社会经济的影响,2007年通过参与性农户调查方法,研究退耕还林项目对陕北居民生计的影响以及由于生态项目实施引起的农民态度的变化.结果表明:农民接受退耕还林补偿政策,但只有极少数人乐意植树(8.9%)、种草(2.2%). 尽管19.1%的农户表示他们的生计受到了项目的负面影响,63.8%的农户表示支持退耕还林项目,但是高达37.2%的农户表示项目结束后会再次垦荒种粮.由此可见,退耕还林项目恢复的植被在项目结束后有可能被重新开垦为农田,该项目获得的环境成果面临被再次破坏的风险.因此,给予合理的补偿来减少农民经济损失、通过技术进步提高单位土地面积产出、通过技术培训使农村剩余劳动力转移出来是环境修复项目成功的重要保证. 相似文献
14.
Trevor A. Carter;Brian Buma; 《Ecology and evolution》2024,14(10):e70095
Given that terrestrial ecosystems globally are facing the loss of biodiversity from land use conversion, invasive species, and climate change, effective management requires a better understanding of the drivers and correlates of biodiversity. Increasingly, biodiversity is co-managed with aboveground carbon storage because high biodiversity in animal species is observed to correlate with high aboveground carbon storage. Most previous investigations into the relationship of biodiversity and carbon co-management do not focus on the biodiversity of the species rich plant kingdom, which may have tradeoffs with carbon storage. To examine the relationships of plant species richness with aboveground tree biomass carbon storage, we used a series of generalized linear models with understory plant species richness and diversity data from the USDA Forest Service Forest Inventory and Analysis dataset and high-resolution modeled carbon maps for the Tongass National Forest. Functional trait data from the TRY database was used to understand the potential mechanisms that drive the response of understory plants. Understory species richness and community weighted mean leaf dry matter content decreased along an increasing gradient of tree biomass carbon storage, but understory diversity, community weighted mean specific leaf area, and plant height at maturity did not. Leaf dry matter content had little variance at the community level. The decline of understory plant species richness but not diversity to increases in aboveground biomass carbon storage suggests that rare species are excluded in aboveground biomass carbon dense areas. These decreases in understory species richness reflect a tradeoff between the understory plant community and aboveground carbon storage. The mechanisms that are associated with observed plant communities along a gradient of biomass carbon storage in this forest suggest that slower-growing plant strategies are less effective in the presence of high biomass carbon dense trees in the overstory. 相似文献
15.
Katherine A. McCulloh Joshua Petitmermet Artur Stefanski Karen E. Rice Roy L. Rich Rebecca A. Montgomery Peter B. Reich 《Global Change Biology》2016,22(12):4124-4133
Global temperatures (T) are rising, and for many plant species, their physiological response to this change has not been well characterized. In particular, how hydraulic parameters may change has only been examined experimentally for a few species. To address this, we measured characteristics of the hydraulic architecture of six species growing in ambient T and ambient +3.4 °C T plots in two experimentally warmed forest sites in Minnesota. These sites are at the temperate–boreal ecotone, and we measured three species from each forest type. We hypothesized that relative to boreal species, temperate species near their northern range border would increase xylem conduit diameters when grown under elevated T. We also predicted a continuum of responses among wood types, with conduit diameter increases correlating with increases in the complexity of wood structure. Finally, we predicted that increases in conduit diameter and specific hydraulic conductivity would positively affect photosynthetic rates and growth. Our results generally supported our hypotheses, and conduit diameter increased under elevated T across all species, although this pattern was driven predominantly by three species. Two of these species were temperate angiosperms, but one was a boreal conifer, contrary to predictions. We observed positive relationships between the change in specific hydraulic conductivity and both photosynthetic rate (P = 0.080) and growth (P = 0.012). Our results indicate that species differ in their ability to adjust hydraulically to increases in T. Specifically, species with more complex xylem anatomy, particularly those individuals growing near the cooler edge of their range, appeared to be better able to increase conduit diameters and specific hydraulic conductivity, which permitted increases in photosynthesis and growth. Our data support results that indicate individual's ability to physiologically adjust is related to their location within their species range, and highlight that some wood types may adjust more easily than others. 相似文献
16.
北半球中高纬度的森林生态系统在全球碳循环过程中扮演着非常重要的角色。基于中国东北地区阔叶红松林与兴安落叶松林2007年和2008年2a生长季的涡度相关通量资料及气象观测资料,比较分析了两类生态系统的碳通量特征及其环境控制因子。结果表明:研究期间,阔叶红松林与兴安落叶松林都表现为碳吸收,强度分别为199gCm-2(阔叶红松林2a生长季平均值)与49gCm-2(兴安落叶松林2008年生长季);阔叶红松林碳吸收强度在生长季的大部分时段都大于兴安落叶松林。半小时尺度上,两类生态系统的呼吸作用均与10cm土壤温度呈显著的指数相关,兴安落叶松林生态系统呼吸的温度敏感性(Q10=3.44)显著大于阔叶红松林(Q10=1.90);日尺度上,阔叶红松林与兴安落叶松林碳释放/吸收的转变临界温度为10℃左右。研究期间,兴安落叶松林生态系统的水分利用效率高于阔叶红松林生态系统。 相似文献
17.
Nonofo Gotcha Honest Machekano Ross N. Cuthbert Casper Nyamukondiwa 《Insect Science》2021,28(4):1076-1086
Although reports have documented loss of species diversity and ecological services caused by stressful temperature changes that result from climate change, some species cope through behavioral compensation. As temperatures and magnitudes of temperature extremes increase, animals should compensate to maintain fitness (such as through temporary behavioral shifts in activity times). Appropriate timing of activity helps avoid competition across species. Although coprophagic dung beetles exhibit species-specific temporal activity times, it is unknown whether temperature drives evolution of these species-specific temporal activity times. Using nine dung beetle species (three each of diurnal, crepuscular, and nocturnal species), we explored differences in heat stress tolerance measured as critical thermal maxima (CTmax; the highest temperature allowing activity) and heat knockdown time (HKDT; survival time under acute heat stress) across these species, and examined the results using a phylogenetically informed approach. Our results showed that day-active species had significantly higher CTmax (diurnal > crepuscular = nocturnal species), whereas crepuscular species had higher HKDT (crepuscular > nocturnal > diurnal species). There was no correlation between heat tolerance and body size across species with distinct temporal activity, and no significant phylogenetic constraint for activity. Species with higher CTmax did not necessarily have higher HKDT, which indicates that species may respond differently to diverse heat tolerance metrics. Acute heat tolerance for diurnal beetles indicates that this trait may constrain activity time and, under high acute temperatures with climate change, species may shift activity times in more benign environments. These results contribute to elucidate the evolution of foraging behavior and management of coprophagic beetle ecosystem services under changing environments. 相似文献
18.
Jan Plue Pieter De Frenne Kamal Acharya Jrg Brunet Olivier Chabrerie Guillaume Decocq Martin Diekmann Bente J. Graae Thilo Heinken Martin Hermy Annette Kolb Isgard Lemke Jaan Liira Tobias Naaf Anna Shevtsova Kris Verheyen Monika Wulf Sara A. O. Cousins 《Global Ecology and Biogeography》2013,22(10):1106-1117
19.
Chenxia Liang Gang Feng Xingfeng Si Lingfeng Mao Guisheng Yang Jens‐Christian Svenning Jie Yang 《Ecology and evolution》2018,8(1):53-58
Bird species richness is mediated by local, regional, and historical factors, for example, competition, environmental heterogeneity, contemporary, and historical climate. Here, we related bird species richness with phylogenetic relatedness of bird assemblages, plant species richness, topography, contemporary climate, and glacial‐interglacial climate change to investigate the relative importance of these factors. This study was conducted in Inner Mongolia, an arid and semiarid region with diverse vegetation types and strong species richness gradients. The following associated variables were included as follows: phylogenetic relatedness of bird assemblages (Net Relatedness Index, NRI), plant species richness, altitudinal range, contemporary climate (mean annual temperature and precipitation, MAT and MAP), and contemporary‐Last Glacial Maximum (LGM) change in climate (change in MAT and change in MAP). Ordinary least squares linear, simultaneous autoregressive linear, and Random Forest models were used to assess the associations between these variables and bird species richness across this region. We found that bird species richness was correlated negatively with NRI and positively with plant species richness and altitudinal range, with no significant correlations with contemporary climate and glacial–interglacial climate change. The six best combinations of variables ranked by Random Forest models consistently included NRI, plant species richness, and contemporary‐LGM change in MAT. Our results suggest important roles of local ecological factors in shaping the distribution of bird species richness across this semiarid region. Our findings highlight the potential importance of these local ecological factors, for example, environmental heterogeneity, habitat filtering, and biotic interactions, in biodiversity maintenance. 相似文献
20.
Masha T. van der Sande Lourens Poorter Lammert Kooistra Patricia Balvanera Kirsten Thonicke Jill Thompson Eric J. M. M. Arets Nashieli Garcia Alaniz Laurence Jones Francisco Mora Tuyeni H. Mwampamba Terry Parr Marielos Peña‐Claros 《Biotropica》2017,49(5):593-603
Impacts of climate change require that society urgently develops ways to reduce amounts of carbon in the atmosphere. Tropical forests present an important opportunity, as they take up and store large amounts of carbon. It is often suggested that forests with high biodiversity have large stocks and high rates of carbon uptake. Evidence is, however, scattered across geographic areas and scales, and it remains unclear whether biodiversity is just a co‐benefit or also a requirement for the maintenance of carbon stocks and uptake. Here, we perform a quantitative review of empirical studies that analyzed the relationships between plant biodiversity attributes and carbon stocks and carbon uptake in tropical forests. Our results show that biodiversity attributes related to species, traits or structure significantly affect carbon stocks or uptake in 64% of the evaluated relationships. Average vegetation attributes (community‐mean traits and structural attributes) are more important for carbon stocks, whereas variability in vegetation attributes (i.e., taxonomic diversity) is important for both carbon stocks and uptake. Thus, different attributes of biodiversity have complementary effects on carbon stocks and uptake. These biodiversity effects tend to be more often significant in mature forests at broad spatial scales than in disturbed forests at local spatial scales. Biodiversity effects are also more often significant when confounding variables are not included in the analyses, highlighting the importance of performing a comprehensive analysis that adequately accounts for environmental drivers. In summary, biodiversity is not only a co‐benefit, but also a requirement for short‐ and long‐term maintenance of carbon stocks and enhancement of uptake. Climate change policies should therefore include the maintenance of multiple attributes of biodiversity as an essential requirement to achieve long‐term climate change mitigation goals. 相似文献