首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular economy concepts, practices, and policies are increasingly drawing attention as important means for the pursuit of sustainable development. This article uses a conceptual framework to catalogue and investigate policy efforts for the circular economy in China. Based on the framework, policy prototypes and specific examples are identified: resource‐oriented, production‐oriented, waste, and use‐oriented and life cycle policies. A comprehensive review of 280 related policies shows that China has a long history of resource‐oriented policies and implemented production‐oriented policies very quickly after the year 2000. China's policies toward the circular economy became more comprehensive through time, with a broad engagement of government agencies, an extensive and progressive coverage of recycling opportunities, production initiatives across multiple scales, and use of different policy instruments. The continuous progress has been driven by proactive state actors and their learning from the international society. The current policy framework, however, is concerned more with the means rather than the ends of the circular economy, and relies too much on direct subsidies and other financial incentives. Policy making can be improved by more explicit consideration of the whole production life cycle and use of market‐based policy design.  相似文献   

2.
The article presents a method for the calculation of selected economy‐wide material flow indicators (namely, direct material input [DMI] and raw material input [RMI]) for economic sectors. Whereas sectoral DMI was calculated using direct data from statistics, we applied a concept of total flows and a hybrid input‐output life cycle assessment method to calculate sectoral RMI. We calculated the indicators for the Czech Republic for 2000–2011. We argue that DMI of economic sectors can be used for policies aiming at decreasing the direct input of extracted raw materials, and imported raw materials and products, whereas sectoral RMI can be better used for justifying support for or weakening the role of individual sectors within the economy. High‐input material flows are associated in the Czech Republic with the extractive industries (agriculture and forestry, the mining of fossil fuels [FFs], other types of mining, and quarrying), with several manufacturing industries (manufacturing of beverages, basic metals, motor vehicles or electricity, and gas and steam supply) and with construction. Viable options for reducing inputs of agricultural biomass include changes in people's diet toward a lower amount of animal‐based food and a decrease in the wasting of food. For FFs, one should think of changing the structure of total primary energy supply toward cleaner gaseous and renewable energy sources, innovations in transportation systems, and improvements in overall energy efficiency. For metal ores, viable options include technological changes leading to smaller and lighter products, as well as consistent recycling and use of secondary metals.  相似文献   

3.
This paper describes the challenges faced, and opportunities identified, by a multidisciplinary team of researchers developing a novel closed loop system to recover valuable metals and reduce e‐waste, focusing on mobile phones as a case study. This multidisciplinary approach is contrasted with current top‐down approaches to making the transition to the circular economy (CE). The aim of the research presented here is to develop a product service system (PSS) that facilitates the recovery of valuable functional components and metals from mobile phone circuit boards. To create a holistic solution and limit unintended consequences, in addition to technological solutions, this paper considers appropriate component lifetimes; the (often ignored) role of the citizen in the circular economy; customer interaction with the PSS; environmental life cycle assessment; and social impacts of the proposed PSS. Development of enabling technologies and materials to facilitate recovery of components and metals and to provide an emotionally durable external enclosure is described. This research also highlights the importance of understanding value in the CE from a multifaceted and interdisciplinary perspective.  相似文献   

4.
This paper identifies the extent to which circular economy (CE) practices are relevant for the implementation of the Sustainable Development Goals (SDGs). The results of a literature review and a matching exercise to determine the relationship between CE practices and SDG targets show that CE practices, potentially, can contribute directly to achieving a significant number of SDG targets. The strongest relationships exist between CE practices and the targets of SDG 6 (Clean Water and Sanitation), SDG 7 (Affordable and Clean Energy), SDG 8 (Decent Work and Economic Growth), SDG 12 (Responsible Consumption and Production), and SDG 15 (Life on Land). The paper also explores synergies that can be created through CE practices among several of the SDG targets. Furthermore, it identifies several potential trade‐offs between targets for decent work, safe working environments, human health and current CE practices relating to recycling of municipal waste, e‐waste and wastewater, and provides suggestions how these can be overcome. The paper concludes that CE practices can be applied as a “toolbox” and specific implementation approaches for achieving a sizeable number of SDG targets. Further empirical research is necessary to determine which specific types of partnerships and means of implementation are required to apply CE practices in the SDG context.  相似文献   

5.
A closed‐loop supply chain (CLSC) is considered not only an important solution for ensuring sustainable exploitation of materials, but also a promising strategy for securing long‐term availability of materials. The latter is especially highlighted in the materials criticality discourse. Critical raw materials (CRMs), being exposed to supply disruptions, create an uncertain operational environment for many industries, particularly for green energy technologies that employ multiple CRMs. However, recycling rates of CRMs are very low and engagement of companies in CLSC for CRM is limited. This study examines factors influencing CLSC for CRM development in photovoltaic panels and wind turbine technologies. The aim is to analyze how the factors manifest themselves in different companies along the supply chain and to identify enabling and bottleneck conditions for implementation of CLSC for CRM. The novelty of the study is twofold: the focus on material rather than product flows, and examination of factors from a multiactor perspective. The evidence obtained suggests that the manufacturing companies and reverse supply‐chain operators engaged in the study take different perspectives (product vs. material) regarding development of CLSC for CRM and thus emphasize different factors. The findings underline the need for interactions between supply‐chain actors, a sound competitive environment for recycling processes, and investment in technologies and infrastructure development if CLSC for CRM is to be developed. The paper provides implications for practitioners and policy makers for implementation of CLSC for CRM, and suggests prospects for further research.  相似文献   

6.
The objective of a circular economy (CE) is to maintain the value of products, materials, and resources in the economy by closing material loops and minimizing waste generation. In recent years, the role of public procurement has been recognized as an important, but as yet not fully exploited, opportunity by cities and municipalities in their transition toward circular societies. This study analyzed public procurement opportunities to promote CE. Different approaches and examples of circular public procurement were identified using case studies. In addition, opportunities to promote CE through sustainable and green public procurement policy were identified analyzing predefined sustainable or green public procurement criteria. The study concludes that public procurement can promote CE and related business models by setting criteria and requirements for the extension of product life spans, efficiency and/or intensity of use, and efficient cycling of biological or technical materials, as well as for the securing of clean and nonrisky cycles. Circular procurement can occur through the procurement of better‐quality products in circular terms, the procurement of new circular products, the use of business concepts that support the CE, and investments in circular ecosystems. Several sectors and product groups were identified as having potential for circular procurement, such as construction, waste, and wastewater management, transportation, food, and catering, furniture, and textiles. The study also suggests that the use of certain tools, such as performance‐based procurement, life cycle approach, and life cycle costing, as well as criteria concerning reuse and recycling of materials, could promote circular procurement. Market dialogue and cooperation between procurers and actors in the supply chains are important for the future development of circular procurement.  相似文献   

7.
Due to resource scarcity and environmental degradation, a new development concept emphasizing environmental concerns, called the circular economy (CE), has been enacted in legislation in China. This environmental management concept can be implemented at three levels, namely, region, industrial zone, and individual enterprise, with the objective of boosting economic development while lessening environmental and resource challenges. Environmental supply chain cooperation (ESCC), an approach that utilizes customer and supplier cooperation in environmental management, has been initiated among Chinese enterprises. Using survey data collected from 396 Chinese manufacturers, we examine the role of ESCC practices in influencing the relationship between implementing CE practices and the achievement of performance outcomes by testing the moderation and mediation effects of ESCC practices on the CE practice‐performance relationship through hierarchical regression analysis. Our data analyses indicate that ESCC practices are useful by moderation and, in some cases, essential by mediation, for Chinese manufacturers seeking to realize the performance targets desired in CE practices. The results highlight the need for Chinese manufacturers to improve supply chain coordination in their implementation of CE. On the policy side, our research findings suggest that ESCC practices are beneficial and, in some cases, necessary for the development of CE in China.  相似文献   

8.
Material stocks are an important part of the social metabolism. Owing to long service lifetimes of stocks, they not only shape resource flows during construction, but also during use, maintenance, and at the end of their useful lifetime. This makes them an important topic for sustainable development. In this work, a model of stocks and flows for nonmetallic minerals in residential buildings, roads, and railways in the EU25, from 2004 to 2009 is presented. The changing material composition of the stock is modeled using a typology of 72 residential buildings, four road and two railway types, throughout the EU25. This allows for estimating the amounts of materials in in‐use stocks of residential buildings and transportation networks, as well as input and output flows. We compare the magnitude of material demands for expansion versus those for maintenance of existing stock. Then, recycling potentials are quantitatively explored by comparing the magnitude of estimated input, waste, and recycling flows from 2004 to 2009 and in a business‐as‐usual scenario for 2020. Thereby, we assess the potential impacts of the European Waste Framework Directive, which strives for a significant increase in recycling. We find that in the EU25, consisting of highly industrialized countries, a large share of material inputs are directed at maintaining existing stocks. Proper management of existing transportation networks and residential buildings is therefore crucial for the future size of flows of nonmetallic minerals.  相似文献   

9.
10.
Phosphorus (P) is a major agricultural nutrient and, in its mineable form, a potentially scarce resource. Countries with limited physical access to P should hence develop an effective national P governance. This requires analyses of trends and variations in P flows and stocks over time. Here, we present a long‐term P flow analysis for the Indian agri‐food sector from 1988 to 2011. Major P flows are imports of mineral P, fertilizer application, and uptake of animal fodder. The mineral P import dependency ratio is constant at around 93%. On average, 20% of P inputs to soils are lost through erosion. Key drivers of changes in P flows include population growth, dietary change, and agricultural intensification. To reduce its P fertilizer import dependence, India could, for example, substitute up to 19% of the presently applied mineral P if manure used as a household fuel were recycled, and up to 21% if P was fully recovered from wastewater and household waste. Comparing selected indicators for P use in agriculture with China and the European Union (EU) reveals that there are structural similarities, such as increasing fertilizer application rates and P accumulation in soils, with the first but large differences compared to the latter. The analyses highlight that in contrast to static indicators, the time‐continuous tracking of P flows provides substantial advantages, such as the identification of long‐term trends, drivers, and intervention options for sustainable P management, given that it allows for the interpretation of present indicators in the context of past trends and legacies.  相似文献   

11.
Sustainable urban resource management depends essentially on a sound understanding of a city's resource flows. One established method for analyzing the urban metabolism (UM) is the Eurostat material flow analysis (MFA). However, for a comprehensive assessment of the UM, this method has its limitations. It does not account for all relevant resource flows, such as locally sourced resources, and it does not differentiate between flows that are associated with the city's resource consumption and resources that only pass through the city. This research sought to gain insights into the UM of Amsterdam by performing an MFA employing the Eurostat method. Modifications to that method were made to enhance its performance for comprehensive UM analyses. A case study of Amsterdam for the year 2012 was conducted and the results of the Eurostat and the modified Eurostat method were compared. The results show that Amsterdam's metabolism is dominated by water flows and by port‐related throughput of fossil fuels. The modified Eurostat method provides a deeper understanding of the UM than the urban Eurostat MFA attributed to three major benefits of the proposed modifications. First, the MFA presents a more complete image of the flows in the UM. Second, the modified resource classification presents findings in more detail. Third, explicating throughput flows yields a much‐improved insight into the nature of a city's imports, exports, and stock. Overall, these advancements provide a deeper understanding of the UM and make the MFA method more useful for sustainable urban resource management.  相似文献   

12.
A ravenous fuel consumer, the cement industry may substitute fossil fuels by industrial wastes and by‐products, identifying the industry as a key example of industrial symbiosis (IS). Benefits from industrial waste alternative fuels (IWAFs) include safe disposal, fossil fuel cost savings, gate fees, and greenhouse gas credits. Poor IWAFs, (high moisture, ash and halogen content) bring higher gate fees, but lessen clinker production. Thermal rating and blower capacity constraints should be satisfied in such a case study of IS. Cement plants must comply with potentially tighter emission limits, compared to fossil fuel utilization, despite higher pollutant precursors in IWAFs. Emissions’ compliance, operational, and production implications are a few among several challenges when assessing multiple IWAF valorization as a symbiotic option from a systems’ perspective. A novel method is proposed to quantitatively assess critical trade‐offs. Species and energy transformations convey a rigorous picture of clinker level, kiln flue gas, and offgas volumes and lay the groundwork for screening, a priori selection, and process tuning. Necessary and sufficient compliance conditions and safety margins are presented in terms of process parameters and actual emissions’ data. Main challenges posed by high flue gas, high offgas volumes, high moisture, low heating value, increased nitrogen oxides emissions, and high halogen and metal content are quantified. As demonstrated in a case study of an actual 1.5 × 106 tonnes per annum clinker plant in this paper, concurrent use of several IWAFs may increase clinker production, while satisfying operational constraints and maintaining compliance. The method may serve for devising IWAF preparation, or tuning mechanisms expanding IWAF valorization.  相似文献   

13.
Materials flow analysis (MFA) is one of the central achievements of industrial ecology. One direction in which one can move MFA beyond mere accounting is by putting the material flows in their social context. This “socially extended MFA” may be carried out at various levels of aggregation. In this article, specific material flows will be linked to concrete actors and mechanisms that cause these flows—using the action‐in‐context (AiC) framework, which contains, inter alia, both proximate and indirect actors and factors. The case study site is of Tat hamlet in Vietnam, set in a landscape of paddy fields on valley floors surrounded by steep, previously forested slopes. Out of the aggregate MFA of Tat, the study focuses on material flows associated with basic needs and sustainability. The most important actors causing these material flows are farming households, politicians, traders, and agribusiness firms—of which local politicians turned out to be pivotal. The study shows the value of combining MFA with actor‐based social analysis. MFA achieves the balanced quantification of the physical system, thus helping to pinpoint key processes. Actor‐based analysis adds the causal understanding of what drives these key processes, leading to improved scenarios of the future and the effective identification of target groups and instruments for policy making.  相似文献   

14.
Extended producer responsibility (EPR) policies have proven effective at raising consumer awareness, expanding waste collection infrastructure, and shifting costs of end‐of‐life (EOL) management from municipalities to stewardship organizations. Yet, such policies have been less successful in advancing waste management programs that ensure a net environmental benefit. This article analyzes how EPR policies for single‐use batteries in the European Union (EU), Canada, and the United States address the environmental costs and benefits of EOL management. Considering these EPR policies is instructive, because single‐use batteries have high collection costs and are of relatively low economic value for waste processors. Without deliberate planning, the environmental burdens of collecting and recycling such batteries may exceed the benefits. This article considers how EPR policies for single‐use batteries integrate performance requirements such as collection rates, recycling efficiencies, and best available techniques. It argues that for such policies to be effective, they need to be extended to address waste collection practices, the life cycle consequences of EOL management, and the quality of recovered materials. Such strategies are relevant to EPR policies for other products with marginal secondary value, including some textiles, plastics, and other types of electronic waste.  相似文献   

15.
Global environmental and resource problems ask for new ways of managing the production and consumption of resources. The implementation of new paradigms, such as the circular economy, requires decision‐makers at multiple levels to make complex decisions. For this, clear analyses and modeling of scenarios are of utmost importance. Meanwhile, as the sophistication of databases and models increases so does the need for user‐friendly tools to use them. The RaMa‐Scene web platform reduces these barriers by allowing users to visualize easily diverse impacts of implementing circular‐economy interventions. This online web platform makes use of the multi‐regional environmentally extended input–output database EXIOBASE version 3 in monetary units, which has been modified to show explicit transactions of raw materials from recycling activities.  相似文献   

16.
As part of the Cradle to Cradle® (C2C) certification program, the C2C certification criterion, Renewable Energy and Carbon Management (RE&CM), focuses on use of electricity from renewable energy (RE) and direct greenhouse gas offsets in the manufacturing stage and, to a limited extent, on the cradle to gate only at the highest level of certification. The aim of this study is to provide decision makers with a quantified overview of possible limitations of that C2C certification requirement and potential gains by introducing a full life cycle assessment (LCA) perspective to the scheme. Scenario analysis was used to perform an LCA of an aluminum can system representing different levels of the C2C certification criterion, RE&CM, considering different strategies to achieve 100% RE in the manufacturing stage. The adoption of a broader life cycle RE perspective was considered through the implementation of electricity from renewable sources from cradle to grave. Our results show that compliance with the current RE&CM certification framework offers limited benefits, that is, significant reduction for climate change, but negligible reductions for other environmental impacts (e.g., particulate matter and acidification). However, increasing the share of RE in the primary aluminum production from a full life cycle perspective can greatly increase the environmental benefits brought up by the C2C certification not only for climate change, but also for the broader range of impact categories. In our striving toward environmental sustainability, which often cannot be approximated by climate‐change impacts alone, we therefore recommend decision makers in industries to combine the C2C certification with LCA when they define strategies for the selection of RE and raw materials suppliers.  相似文献   

17.
The food industry in Australia (agriculture and manufacturing) plays a fundamental role in contributing to socioeconomic sectors nationally. However, alongside the benefits, the industry also produces environmental burdens associated with the production of food. Sectorally, agriculture is the largest consumer of water. Additionally, land degradation, greenhouse gas emissions, energy consumption, and waste generation are considered the main environmental impacts caused by the industry. The research project aims to evaluate the eco‐efficiency performance of various subsectors in the Australian agri‐food systems through the use of input‐output–oriented approaches of data envelopment analysis and material flow analysis. This helps in establishing environmental and economic indicators for the industry. The results have shown inefficiencies during the life cycle of food production in Australia. Following the principles of industrial ecology, the study recommends the implementation of sustainable processes to increase efficiency, diminish undesirable outputs, and decrease the use of nonrenewable inputs within the production cycle. Broadly, the research outcomes are useful to inform decision makers about the advantages of moving from a traditional linear system to a circular production system, where a sustainable and efficient circular economy could be created in the Australian food industry.  相似文献   

18.
Under the dual pressure of environmental constraints and increasingly thin profit margins, the cement industry in China is in a predicament. To alleviate the environmental and the economic pressure of the cement industry and to tackle the problem of delayed environmental infrastructure construction, this article introduced an urban ecosystem in which the cement industry was transformed into an effective complement to environmental infrastructure. The Xinfeng Cement Industrial Park in China, which has a production capacity of 5 million tonnes per annum (Mt/a) of clinker, was chosen as a case study. Our methodology involved proposing technologies to develop an efficient cement plant‐centered urban ecosystem; evaluating its environmental and economic performance; identifying barriers in its promotion; and proposing supportive policies. Results showed that the city's waste recycling ratio rose from about 50% to 70%, saving 0.6 Mt/a of coal equivalent and reducing about 3.0 Mt/a of resulting carbon dioxide (CO2) emissions. The life span of the city's landfill site was extended by about 30 years. The total investment was 3.2 billion yuan (about US$480 million), 1 with an average payback period of 3 years. The Xinfeng Cement Industrial Park was transformed from an energy‐intensive consumer and a significant CO2 emitter to a key industrial waste recycler, a crucial municipal waste co‐processor, an important new building material supplier, and a potential energy producer. Last, the “not‐in‐my‐back‐yard” (NIMBY) effect from constructing new environmental infrastructure was also avoided.  相似文献   

19.
Modeling pathways toward sustainable production and consumption requires improved spatio-temporal and material coverage of end-use product stocks. Momentarily, studies on inflow-driven, dynamic material flow analysis (dMFA) extrapolate scarce information on material end-use shares (i.e., ratios that split economy-wide material consumption to different end-use products) for single countries and years across longer time periods and global regions. Therefore, in part 1 of this work, we reviewed five methods to derive material end-use shares which use industry shipment data in physical units and monetary input–output tables (MIOTs). Herein, we comparatively apply these methods to the United States, drawing on detailed national data, as well as the multi-regional input–output model EXIOBASE3. To better match MIOT and dMFA system definitions, we propose the end-use transfer method, which re-routes specific intermediate outputs to final demand in MIOTs. In closing, we conclude on 12 points for improved end-use shares. We find mixed results regarding the fit between end-use shares derived from industry shipments and MIOTs: for detailed national data, we find good fit for some materials (e.g., aluminum), while others deviate strongly (e.g., steel). In many cases, the temporal trend of MIOT-derived end-use shares roughly agrees with industry shipments. For EXIOBASE3, we find good fit for some countries and materials, but substantial mismatches for others. Despite mixed results, combining MIOT-based end-use shares with industry shipments and auxiliary country-level data could enable improved temporal, geographical, and end-use resolution. However, the scarcity, documentation, and quality of input data are key limitations for more accurate and detailed end-use shares. This article met the requirements for a gold-gold data openness badge described at http://jie.click/badges .   相似文献   

20.
Most anthropogenic material stocks and flows are associated with the building sector. Several recent studies have developed material composition indicators (MCIs) suitable for calculating material stocks and flows of the building sector using bottom‐up approaches, which hold great potential to provide information to support resource efficiency policies. A major limitation is the lack of country‐specific MCIs. This study aims to introduce a concept for a better transferability of MCI across different contexts by proposing requirements for defining MCIs and to discuss options and limits of the transferability. We take existing MCIs for residential buildings in Germany and Japan as case studies and make them comparable by applying harmonization methods. Based on that, similarities and differences are systematically identified and discussed, considering their socioeconomic, cultural, technical, and environmental factors. Our results indicate significant limitations to the transferability of MCIs for detached houses, while bigger apartment complexes show greater homogeneity despite the very different environments in which they are constructed. This indicates that while it is possible to assume foreign MCIs as plausible for large constructions, local coefficients need to be estimated for smaller single‐family homes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号