共查询到20条相似文献,搜索用时 15 毫秒
1.
Albert G. Locham Boaz Kaunda‐Arara Joseph G. Wakibia Shadrack Muya 《African Journal of Ecology》2015,53(4):560-571
Studies on feeding ecology of fishes are important for understanding ecosystem structure and function. This study tested the hypothesis of diet and niche breath variation in the marbled parrotfish (Leptoscarus vaigiensis) among coral reefs of different protection levels in Kenya. Fish samples were obtained from protected (Malindi and Watamu marine parks), moderately fished (Malindi and Watamu marine reserves) and highly fished (Vipingo and Kanamai) reefs. Total lengths of fish samples were measured and their stomach contents quantified using the point method. Seasonal dietary composition, niche breaths and feeding intensities were compared between the sites using multivariate statistics. Results showed the parrotfish is a predominantly reef macroalgal grazer. Fish from protected sites fed on diverse dietary items compared to those from reserves and highly fished sites. Fish niche breadths differed between sites and seasons. Higher niche breadths occurred in protected sites during the north‐east monsoon, while higher values occurred at fished sites during the south‐east monsoon season. This study, the first of its kind in Kenya and most of the western Indian Ocean, describes feeding in the marbled parrotfish and spatial variation in niche breadth as influenced by fishing pressure, environmental variability and biological interactions. 相似文献
2.
3.
Corals and coral reefs confront us with a variety of paradoxes in terms of their responses to global change. The species appear evolutionarily long-lived and stable, and combinations of organisms recur and persist at levels ranging from endosymbiosis to palaeocommunity structure. The fact that these organisms and communities occupy a seemingly precarious environment near the common interface of land, sea, and air suggests that they possess powerful adaptive and acclimative mechanisms, and the special characteristics associated with their range of reproductive options, their modular (colonial) form, and their symbiotic associations provide multiple pathways for adaptation. At the same time, they are widely considered to be vulnerable to anthropogenic stresses, and to show signs of deterioration on a global scale. Interest in corals is further enhanced by their unique position with regard to the carbon cycle, with inorganic and organic carbon metabolisms that are of comparable magnitudes. The durable limestone structures they create modify the shallow-water environment, and their mineral skeletons preserve in their isotopic, chemical, and structural characteristics records of past environmental conditions. Whether as survivors, recorders, or victims, their relationship to global change is fascinating and instructive. This paper provides a general background and context for the specific papers that make up this topical issue of Global Change Biology. 相似文献
4.
Austin M. Betancourt Ileana F. Fenwick Hunter B. Howard Alexys E. Long Peggy Fong Paul H. Barber Caitlin R. Fong 《Journal of phycology》2023,59(1):277-280
Coral reefs are shifting from coral to algal-dominated ecosystems worldwide. Recently, Turbinaria ornata, a marine alga native to coral reefs of the South Pacific, has spread in both range and habitat usage. Given dense stands of T. ornata can function as an alternative stable state on coral reefs, it is imperative to understand the factors that underlie its success. We tested the hypothesis that T. ornata demonstrates ontogenetic variation in allocation to anti-herbivore defense, specifically that blade toughness varied nonlinearly with thallus size. We quantified the relationship between T. ornata blade toughness and thallus size for individual thalli within algal stands (N = 345) on seven fringing reefs along the north shore of Moorea, French Polynesia. We found that blade toughness was greatest at intermediate sizes that typically form canopies, with overall reduced toughness in both smaller individuals that refuge within the understory and older reproductive individuals that ultimately detach and form floating rafts. We posit this variation in blade toughness reduces herbivory on the thalli that are most exposed to herbivores and may facilitate reproduction in dispersing stages, both of which may aid the proliferation of T. ornata. 相似文献
5.
Helen E. Fox Jill L. Harris Emily S. Darling Gabby N. Ahmadia Estradivari Tries B. Razak 《Restoration Ecology》2019,27(4):862-869
Calls for coral reef restoration are increasing amidst continued declines, yet we know little about long‐term outcomes and conditions that lead to successful coral recovery. Here, we report on one of the longest monitoring studies following 16 years of large‐scale, “low‐tech” experimental reef rehabilitation on rubble fields created by chronic blast fishing in Komodo National Park, Indonesia. After blast fishing had stopped, in the absence of rehabilitation, hard coral cover in rubble fields remained about 3% from 1999 to 2016, but on rehabilitation treatments, cover increased from 0% in 2002 to 44.5% (±21.9% SD) in 2016. Coral cover varied among sites and treatments (ranging from <5 to >80% in 2016) in patterns that may reflect current strength and turbidity. Our results demonstrate that low‐tech substrate stabilization can facilitate natural coral recruitment and growth. We conclude that relatively low‐cost methods can deliver sustained rehabilitation of hard coral cover and that long‐term monitoring should be incorporated more widely in restoration activities to inform return on investment. 相似文献
6.
Inshore marine seascapes support a diversity of interconnected habitats and are an important focus for biodiversity conservation. This study examines the importance of habitat attributes to fish assemblages across a mosaic of inshore habitats: coral reefs, rocky reefs, macroalgae beds and sand/rubble beds. Fishes and benthic habitats were surveyed at 34 sites around continental islands of the central Great Barrier Reef using baited remote underwater video stations (BRUVS). Species richness was influenced foremost by habitat type and also by structural complexity within habitat types. The most speciose assemblages occurred in coral and rocky reef habitats with high structural complexity, provided by the presence of coral bommies/overhangs, boulders and rock crevices. Nonetheless, macroalgae and sand/rubble beds also supported unique species, and therefore contributed to the overall richness of fish assemblages in the seascape. Most trophic groups had positive associations with complexity, which was the most important predictor for abundance of piscivorous fishes and mobile planktivores. There was significant differentiation of fish assemblages among habitats, with the notable exception of coral and rocky reefs. Species assemblages overlapped substantially between coral and rocky reefs, which had 60% common species, despite coral cover being lower on rocky reefs. This suggests that, for many species, rocky and coral substrates can provide equivalent habitat structure, emphasizing the importance of complexity in providing habitat refuges, and highlighting the contribution of rocky reefs to habitat provision within tropical seascapes. The results of this study support an emerging recognition of the collective value of habitat mosaics in inshore marine ecosystems. 相似文献
7.
Kate Osborne Angus A. Thompson Alistair J. Cheal Michael J. Emslie Kerryn A. Johns Michelle J. Jonker Murray Logan Ian R. Miller Hugh P. A. Sweatman 《Global Change Biology》2017,23(9):3869-3881
Climate change threatens coral reefs across the world. Intense bleaching has caused dramatic coral mortality in many tropical regions in recent decades, but less obvious chronic effects of temperature and other stressors can be equally threatening to the long‐term persistence of diverse coral‐dominated reef systems. Coral reefs persist if coral recovery rates equal or exceed average rates of mortality. While mortality from acute destructive events is often obvious and easy to measure, estimating recovery rates and investigating the factors that influence them requires long‐term commitment. Coastal development is increasing in many regions, and sea surface temperatures are also rising. The resulting chronic stresses have predictable, adverse effects on coral recovery, but the lack of consistent long‐term data sets has prevented measurement of how much coral recovery rates are actually changing. Using long‐term monitoring data from 47 reefs spread over 10 degrees of latitude on Australia's Great Barrier Reef (GBR), we used a modified Gompertz equation to estimate coral recovery rates following disturbance. We compared coral recovery rates in two periods: 7 years before and 7 years after an acute and widespread heat stress event on the GBR in 2002. From 2003 to 2009, there were few acute disturbances in the region, allowing us to attribute the observed shortfall in coral recovery rates to residual effects of acute heat stress plus other chronic stressors. Compared with the period before 2002, the recovery of fast‐growing Acroporidae and of “Other” slower growing hard corals slowed after 2002, doubling the time taken for modest levels of recovery. If this persists, recovery times will be increasing at a time when acute disturbances are predicted to become more frequent and intense. Our study supports the need for management actions to protect reefs from locally generated stresses, as well as urgent global action to mitigate climate change. 相似文献
8.
In a given area, plant-animal mutualistic interactions form complex networks that often display nestedness, a particular type of asymmetry in interactions. Simple ecological and evolutionary factors have been hypothesized to lead to nested networks. Therefore, nestedness is expected to occur in other types of mutualisms as well. We tested the above prediction with the network structure of interactions in cleaning symbiosis at three reef assemblages. In this type of interaction, shrimps and fishes forage on ectoparasites and injured tissues from the body surface of fish species. Cleaning networks show strong patterns of nestedness. In fact, after controlling for species richness, cleaning networks are even more nested than plant-animal mutualisms. Our results support the notion that mutualisms evolve to a predictable community-level structure, be it in terrestrial or marine communities. 相似文献
9.
Coral reefs are the worlds most celebrated indicators of ocean health. While the global trajectory of coral reef degradation is now well documented, and the accompanying loss of economic benefits increasingly demonstrated, the consequences in terms of human health have been largely ignored. Reefs provide a wide array of benefits to humans, contributing most directly to the health of subsistence fishing communities located on adjacent coasts and islands. Interactions between human and marine ecosystem health are complex, bidirectional and nonlinear. We draw on a broad range of data and experience to identify key links in the ecological chain from the coral polyp to the human society. Our conclusions are that humans are components of coral reef ecosystems, few studies of reef health incorporate human health, few data are available to quantify the health services reefs provide to people, and human health security is essential to the preservation of coral reef ecosystems. 相似文献
10.
Bellwood DR Hoey AS Hughes TP 《Proceedings. Biological sciences / The Royal Society》2012,279(1733):1621-1629
Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises. 相似文献
11.
Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO(2) may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO(2) (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO(2) and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance. 相似文献
12.
Sara E. Cannon Simon D. Donner Angela Liu Pedro C. González Espinosa Andrew H. Baird Julia K. Baum Andrew G. Bauman Maria Beger Cassandra E. Benkwitt Matthew J. Birt Yannick Chancerelle Joshua E. Cinner Nicole L. Crane Vianney Denis Martial Depczynski Nur Fadli Douglas Fenner Christopher J. Fulton Yimnang Golbuu Nicholas A. J. Graham James Guest Hugo B. Harrison Jean-Paul A. Hobbs Andrew S. Hoey Thomas H. Holmes Peter Houk Fraser A. Januchowski-Hartley Jamaluddin Jompa Chao-Yang Kuo Gino Valentino Limmon Yuting V. Lin Timothy R. McClanahan Dominic Muenzel Michelle J. Paddack Serge Planes Morgan S. Pratchett Ben Radford James Davis Reimer Zoe T. Richards Claire L. Ross John Rulmal Jr. Brigitte Sommer Gareth J. Williams Shaun K. Wilson 《Global Change Biology》2023,29(12):3318-3330
Scientists and managers rely on indicator taxa such as coral and macroalgal cover to evaluate the effects of human disturbance on coral reefs, often assuming a universally positive relationship between local human disturbance and macroalgae. Despite evidence that macroalgae respond to local stressors in diverse ways, there have been few efforts to evaluate relationships between specific macroalgae taxa and local human-driven disturbance. Using genus-level monitoring data from 1205 sites in the Indian and Pacific Oceans, we assess whether macroalgae percent cover correlates with local human disturbance while accounting for factors that could obscure or confound relationships. Assessing macroalgae at genus level revealed that no genera were positively correlated with all human disturbance metrics. Instead, we found relationships between the division or genera of algae and specific human disturbances that were not detectable when pooling taxa into a single functional category, which is common to many analyses. The convention to use percent cover of macroalgae as an indication of local human disturbance therefore likely obscures signatures of local anthropogenic threats to reefs. Our limited understanding of relationships between human disturbance, macroalgae taxa, and their responses to human disturbances impedes the ability to diagnose and respond appropriately to these threats. 相似文献
13.
《Current biology : CB》2021,31(23):5385-5392.e4
- Download : Download high-res image (242KB)
- Download : Download full-size image
14.
Katie L. Cramer Mary K. Donovan Jeremy B. C. Jackson Benjamin J. Greenstein Chelsea A. Korpanty Geoffrey M. Cook John M. Pandolfi 《Ecology and evolution》2021,11(15):10098
The mass die‐off of Caribbean corals has transformed many of this region’s reefs to macroalgal‐dominated habitats since systematic monitoring began in the 1970s. Although attributed to a combination of local and global human stressors, the lack of long‐term data on Caribbean reef coral communities has prevented a clear understanding of the causes and consequences of coral declines. We integrated paleoecological, historical, and modern survey data to track the occurrence of major coral species and life‐history groups throughout the Caribbean from the prehuman period to the present. The regional loss of Acropora corals beginning by the 1960s from local human disturbances resulted in increases in the occurrence of formerly subdominant stress‐tolerant and weedy scleractinian corals and the competitive hydrozoan Millepora beginning in the 1970s and 1980s. These transformations have resulted in the homogenization of coral communities within individual countries. However, increases in stress‐tolerant and weedy corals have slowed or reversed since the 1980s and 1990s in tandem with intensified coral bleaching and disease. These patterns reveal the long history of increasingly stressful environmental conditions on Caribbean reefs that began with widespread local human disturbances and have recently culminated in the combined effects of local and global change. 相似文献
15.
Chelsea L. Wood Brian J. Zgliczynski Alison J. Haupt Ana Sofía Guerra Fiorenza Micheli Stuart A. Sandin 《Global Change Biology》2018,24(8):3666-3679
Human impacts on ecosystems can decouple the fundamental ecological relationships that create patterns of diversity in free‐living species. Despite the abundance, ubiquity, and ecological importance of parasites, it is unknown whether the same decoupling effects occur for parasitic species. We investigated the influence of fishing on the relationship between host diversity and parasite diversity for parasites of coral reef fishes on three fished and three unfished islands in the central equatorial Pacific. Fishing was associated with a shallowing of the positive host‐diversity–parasite‐diversity relationship. This occurred primarily through negative impacts of fishing on the presence of complex life‐cycle parasites, which created a biologically impoverished parasite fauna of directly transmitted parasites resilient to changes in host biodiversity. Parasite diversity appears to be decoupled from host diversity by fishing impacts in this coral reef ecosystem, which suggests that such decoupling might also occur for parasites in other ecosystems affected by environmental change. 相似文献
16.
Downs CA Mueller E Phillips S Fauth JE Woodley CM 《Marine biotechnology (New York, N.Y.)》2000,2(6):533-544
Using a novel molecular biomaker system (MBS), we assessed the physiological status of coral (Montastraea faveolata) challenged by heat stress by assaying specific cellular and molecular parameters. This technology is particularly relevant
for corals because heat stress is thought to be an essential component of coral bleaching. This phenomenon is widely believed
to be responsible for coral mortality worldwide, particularly during 1997–1998. Specific parameters of coral cellular physiology
were assayed using the MBS that are indicative of a nonstressed or stressed condition. The MBS distinguished the separate
and combined effects of heat and light on the 2 coral symbionts, a scleractinian coral and a dinoflagellate algae (zooxanthellae).
This technology aids in the accurate diagnosis of coral condition because each parameter is physiologically well understood.
Finally, the MBS technology is relatively inexpensive, easy to implement, and precise, and it can be quickly adapted to a
high-throughout robotic system for mass sample analysis.
Accepted May 25, 2000. 相似文献
17.
PETER W. GLYNN 《Global Change Biology》1996,2(6):495-509
Coral reef bleaching, the temporary or permanent loss of photosynthetic microalgae (zooxanthellae) and/or their pigments by a variety of reef taxa, is a stress response usually associated with anthropogenic and natural disturbances. Degrees of bleaching, within and among coral colonies and across reef communities, are highly variable and difficult to quantify, thus complicating comparisons of different bleaching events. Small-scale bleaching events can often be correlated with specific disturbances (e.g. extreme low/high temperatures, low/high solar irradiance, subaerial exposure, sedimentation, freshwater dilution, contaminants, and diseases), whereas large scale (mass) bleaching occurs over 100s to 1000s of km2 , which is more difficult to explain. Debilitating effects of bleaching include reduced/no skeletal growth and reproductive activity, and a lowered capacity to shed sediments, resist invasion of competing species and diseases. Severe and prolonged bleaching can cause partial to total colony death, resulting in diminished reef growth, the transformation of reef-building communities to alternate, non-reef building community types, bioerosion and ultimately the disappearance of reef structures. Present evidence suggests that the leading factors responsible for large-scale coral reef bleaching are elevated sea temperatures and high solar irradiance (especially ultraviolet wavelengths), which may frequently act jointly. 相似文献
18.
The collapse of Caribbean coral reefs has been attributed in part to historic overfishing, but whether fish assemblages can recover and how such recovery might affect the benthic reef community has not been tested across appropriate scales. We surveyed the biomass of reef communities across a range in fish abundance from 14 to 593 g m−2 , a gradient exceeding that of any previously reported for coral reefs. Increased fish biomass was correlated with an increased proportion of apex predators, which were abundant only inside large marine reserves. Increased herbivorous fish biomass was correlated with a decrease in fleshy algal biomass but corals have not yet recovered. 相似文献
19.
Elizabeth R. Selig Kenneth S. Casey John F. Bruno 《Global Ecology and Biogeography》2010,19(3):397-411
Aim Coral reefs are widely considered to be particularly vulnerable to changes in ocean temperatures, yet we understand little about the broad‐scale spatio‐temporal patterns that may cause coral mortality from bleaching and disease. Our study aimed to characterize these ocean temperature patterns at biologically relevant scales. Location Global, with a focus on coral reefs. Methods We created a 4‐km resolution, 21‐year global ocean temperature anomaly (deviations from long‐term means) database to quantify the spatial and temporal characteristics of temperature anomalies related to both coral bleaching and disease. Then we tested how patterns varied in several key metrics of disturbance severity, including anomaly frequency, magnitude, duration and size. Results Our analyses found both global variation in temperature anomalies and fine‐grained spatial variability in the frequency, duration and magnitude of temperature anomalies. However, we discovered that even during major climatic events with strong spatial signatures, like the El Niño–Southern Oscillation, areas that had high numbers of anomalies varied between years. In addition, we found that 48% of bleaching‐related anomalies and 44% of disease‐related anomalies were less than 50 km2, much smaller than the resolution of most models used to forecast climate changes. Main conclusions The fine‐scale variability in temperature anomalies has several key implications for understanding spatial patterns in coral bleaching‐ and disease‐related anomalies as well as for designing protected areas to conserve coral reefs in a changing climate. Spatial heterogeneity in temperature anomalies suggests that certain reefs could be targeted for protection because they exhibit differences in thermal stress. However, temporal variability in anomalies could complicate efforts to protect reefs, because high anomalies in one year are not necessarily predictive of future patterns of stress. Together, our results suggest that temperature anomalies related to coral bleaching and disease are likely to be highly heterogeneous and could produce more localized impacts of climate change. 相似文献
20.
Luisa Fontoura Mauricio Cantor Guilherme O. Longo Mariana G. Bender Roberta M. Bonaldo Sergio R. Floeter 《Ecography》2020,43(9):1278-1290
Understanding the interplay between processes operating at large and small spatiotemporal scales in shaping biotic interactions remains challenging. Recent studies illustrate how phenotypic specialization, species life-history traits and/or resource partitioning recurrently underlie the structure of mutualistic interactions in terrestrial ecosystems along large latitudinal gradients of biodiversity. However, we know considerably less about how local processes interact with large-scale patterns of biodiversity in modulating biotic interactions in the marine realm. Considering agonistic behaviour as a proxy for contest competition, we empirically investigate whether the structure of reef fish agonistic interactions is conserved across a 34 000-km longitudinal gradient of biodiversity. By sampling coral reefs using standardized remote underwater video, we found recurrent patterns of fish agonistic behaviour in disparate communities distributed across five biogeographic provinces of the Pacific and Atlantic oceans. While the sheer number of species increases with regional richness, the number of aggressive disputes at the habitat scale is similar across communities. We then combined generalized linear models and network theory to reveal that, the emergent structure of local agonistic networks is not modular but instead recurrently display a nested structure, with a core of highly interactive site-attached herbivores of the Pomacentridae family. Therefore, despite the increase in the number of species involved in agonistic interactions toward speciose communities, the network structure is conserved along the longitudinal richness gradient because local disputes are mostly driven by closely-related, functionally-similar species. These findings suggest that evolutionary and local processes interact in modulating reef fish agonistic behaviour and that fine-scale niche-partitioning can structure the ecological networks in marine ecosystems. 相似文献