首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Atmospheric oxygen levels control the oxidative side of key biogeochemical cycles and place limits on the development of high‐energy metabolisms. Understanding Earth's oxygenation is thus critical to developing a clearer picture of Earth's long‐term evolution. However, there is currently vigorous debate about even basic aspects of the timing and pattern of the rise of oxygen. Chemical weathering in the terrestrial environment occurs in contact with the atmosphere, making paleosols potentially ideal archives to track the history of atmospheric O2 levels. Here we present stable chromium isotope data from multiple paleosols that offer snapshots of Earth surface conditions over the last three billion years. The results indicate a secular shift in the oxidative capacity of Earth's surface in the Neoproterozoic and suggest low atmospheric oxygen levels (<1% PAL pO2) through the majority of Earth's history. The paleosol record also shows that localized Cr oxidation may have begun as early as the Archean, but efficient, modern‐like transport of hexavalent Cr under an O2‐rich atmosphere did not become common until the Neoproterozoic.  相似文献   

2.
Fractionation of stable Cr isotopes has been measured in Archaean paleosols and marine sedimentary rocks and interpreted to record the terrestrial oxidation of Cr(III) to Cr(VI), providing possible indirect evidence for the emergence of oxygenic photosynthesis. However, these fractionations occur amidst evidence from other geochemical proxies for a pervasively anoxic atmosphere. This study examined the Cr geochemistry of the ca. 1.85 Ga Flin Flon paleosol, which developed under an atmosphere unambiguously oxidising enough to quantitatively convert Fe(II) to Fe(III) during pedogenesis. The paleosol shows an extreme range in Cr isotope composition of 2.76 ‰ δ53/52Cr. The protolith greenstone (δ53/52Cr: ?0.23 ‰), the deepest weathering horizon (δ53/52Cr: ?0.15 to ?0.23 ‰) and a residual corestone in the upper paleosol (δ53/52Cr: ?0.01 ‰) all exhibit Cr isotopic compositions comparable to unaltered igneous rocks. The most significant isotopic fractionation is preserved in the areas influenced by oxidative subaerial weathering (i.e. increase in Fe(III)/Fe(II)) and the greatest loss of mobile elements. The uppermost paleosol horizon is both Cr and Mn depleted and offset to significantly 53Cr‐enriched compositions (δ53/52Cr values between +1.50 and +2.38 ‰), which is not easily modelled with the oxidation of Cr(III) and loss of isotopically heavy Cr(VI). Instead, the currently preferred model for these data invokes the open‐system removal of isotopically light aqueous Cr(III) during either pedogenesis or subsequent hydrothermal/metamorphic alteration. The 53Cr enrichment would then represent the preferential dissolution or complexation of isotopically light aqueous Cr(III) species (enhanced by lower pH conditions and possibly the presence of complexing ligands) and/or the residual signature from preferential adsorption of isotopically heavy Cr(III). Both scenarios would contradict the widely held assumption that only redox reactions of Cr can generate large magnitude isotopic fractionations and, if substantiated, non‐redox isotope effects would complicate the conclusive fingerprinting of ancient atmospheric O2 from Cr isotope data alone.  相似文献   

3.
Latitudinal transects across subpolar ecozones display striking changes in lakewater chemistry reflecting steep gradients in vegetation, climate, and other variables. This paper explores the relationships among chemical and physical lakewater characteristics of 70 lakes spanning arctic treeline in Canada's Central Northwest Territories. Principal components analysis (PCA) was used to examine trends and relationships among environmental variables and these 70 sites. In general, lakes in this data set were dilute, slightly acidic to slightly alkaline, and nutrient-poor. However, a strong trend toward more concentrated lakewater conditions in densely forested areas was observed relative to tundra regions. Interrelationships among measured limnological variables appear to be strongly influenced by catchment characteristics associated with proximity of sites to treeline.  相似文献   

4.
The Middle Cambrian (series 3, Drumian, Bolaspidella Biozone) Ravens Throat River Lagerstätte in the Rockslide Formation of the Mackenzie Mountains, northwestern Canada, contains a Burgess Shale‐type biota of similar age to the Wheeler and Marjum formations of Utah. The Rockslide Formation is a unit of deep‐water, mixed carbonate and siliciclastic facies deposited in a slope setting on the present‐day northwestern margin of Laurentia. At the fossil‐bearing locality, the unit is about 175 m thick and the lower part onlaps a fault scarp cutting lower Cambrian sandstones. It consists of a succession of shale, laminated to thin‐bedded lime mudstone, debris‐flow breccias, minor calcareous sandstone, greenish‐coloured calcareous mudstone and dolomitic siltstone, overlain by shallow‐water dolostones of the Broken Skull Formation, which indicates an overall progradational sequence. Two ~1‐m‐thick units of greenish calcareous mudstone in the upper part exhibit soft‐bodied preservation, yielding a biota dominated by bivalved arthropods and macrophytic algae, along with hyoliths and trilobites. It represents a low‐diversity in situ community. Most of the fossils occur in the lower unit, and only the more robust components are preserved. Branching burrows are present under the carapaces of some arthropods, and common millimetre‐sized disruptions of laminae are interpreted as bioturbation. The fossiliferous planar‐laminated calcareous mudstone consists of chlorite, illite, quartz silt, calcite and dolomite and is an anomalous facies in the succession. It was deposited via hemipelagic fallout of a mixture of platform‐derived and terrestrial mud. Geochemical analysis and trace‐element proxies indicate oxic bottom waters that only occasionally might have become dysoxic. Productivity in the water column was dominated by cyanobacteria. Fragments of microbial mats are common as carbonaceous seams. Complete decay of soft tissues was interrupted due to the specific sediment composition, providing support for the role of clay minerals, possibly chlorite, in the taphonomic process.  相似文献   

5.
6.
7.
8.
Well-preserved brachiopods from the Niagara Gorge area, Anticosti Island, Britain, Gotland and Estonia were utilised to delineate a complex isotopic evolution for Llandovery-Wenlock seawater. The Sr-isotope record reflects the Salinic I tectophase of the Late Llandovery in the continuous increase in 87Sr/86Sr values from 0.708070 to 0.708346. The Salinic II tectophase is marked by relative constancy of Sr isotope values until the Late Wenlock when it rises from 0.708345 to 0.708430. The second tectonic phase was therefore likely only of a regional nature. The carbon isotopes during the Llandovery fall within a band of about − 1‰ to + 3‰, a range comparable to modern low-latitude brachiopods. A large positive δ13C excursion of about 3‰, identifies the Ireviken event/excursion, characterizes the Early Wenlock. The biotic crisis and the isotope excursion itself may be ultimately related to the onset and duration of the Cancañiri glaciation, although a direct causative scenario is as yet unknown. The oxygen isotopic trends of well-preserved brachiopods clearly reflect a warm climate interval during the latest Llandovery associated with the Silurian sea level highstand. Subsequently, in the Early Wenlock, the sea level fell with the onset of the Cancañiri glaciation in the southern hemisphere. This is reflected in a significant positive δ18O excursion, particularly in brachiopods from the Niagara Gorge area. Brachiopods from lower latitudes were awash in warm tropical currents and therefore exhibit somewhat more negative δ18O values, indicating a lesser cooling gradient.  相似文献   

9.
10.
Photolysis of FeL3, CoL3, NiL2, CuL2 and ZnL2, where L = S2CNEt2, in PVC matrices at ca. 90 K results in photooxidation of the metal complexes through irreversible metal to solvent charge transfer. DFT quantum mechanical studies of the S2CNMe2 anion and the Ni, Cu and Zn derivatives were carried out, providing a more nuanced understanding of the bonding of the dithiocarbamate ligand than suggested by classical resonance arguments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号