首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Castillo KD  Ries JB  Weiss JM 《PloS one》2011,6(2):e14615

Background

Natural and anthropogenic stressors are predicted to have increasingly negative impacts on coral reefs. Understanding how these environmental stressors have impacted coral skeletal growth should improve our ability to predict how they may affect coral reefs in the future. We investigated century-scale variations in skeletal extension for the slow-growing massive scleractinian coral Siderastrea siderea inhabiting the forereef, backreef, and nearshore reefs of the Mesoamerican Barrier Reef System (MBRS) in the western Caribbean Sea.

Methodology/Principal Findings

Thirteen S. siderea cores were extracted, slabbed, and X-rayed. Annual skeletal extension was estimated from adjacent low- and high-density growth bands. Since the early 1900s, forereef S. siderea colonies have shifted from exhibiting the fastest to the slowest average annual skeletal extension, while values for backreef and nearshore colonies have remained relatively constant. The rates of change in annual skeletal extension were −0.020±0.005, 0.011±0.006, and −0.008±0.006 mm yr−1 per year [mean±SE] for forereef, backreef, and nearshore colonies respectively. These values for forereef and nearshore S. siderea were significantly lower by 0.031±0.008 and by 0.019±0.009 mm yr−1 per year, respectively, than for backreef colonies. However, only forereef S. siderea exhibited a statistically significant decline in annual skeletal extension over the last century.

Conclusions/Significance

Our results suggest that forereef S. siderea colonies are more susceptible to environmental stress than backreef and nearshore counterparts, which may have historically been exposed to higher natural baseline stressors. Alternatively, sediment plumes, nutrients, and pollution originating from watersheds of Guatemala and Honduras may disproportionately impact the forereef environment of the MBRS. We are presently reconstructing the history of environmental stressors that have impacted the MBRS to constrain the cause(s) of the observed reductions in coral skeletal growth. This should improve our ability to predict and potentially mitigate the effects of future environmental stressors on coral reef ecosystems.  相似文献   

2.
Identifying which factors lead to coral bleaching resistance is a priority given the global decline of coral reefs with ocean warming. During the second year of back‐to‐back bleaching events in the Florida Keys in 2014 and 2015, we characterized key environmental and biological factors associated with bleaching resilience in the threatened reef‐building coral Orbicella faveolata. Ten reefs (five inshore, five offshore, 179 corals total) were sampled during bleaching (September 2015) and recovery (May 2016). Corals were genotyped with 2bRAD and profiled for algal symbiont abundance and type. O. faveolata at the inshore sites, despite higher temperatures, demonstrated significantly higher bleaching resistance and better recovery compared to offshore. The thermotolerant Durusdinium trenchii (formerly Symbiondinium trenchii) was the dominant endosymbiont type region‐wide during initial (78.0% of corals sampled) and final (77.2%) sampling; >90% of the nonbleached corals were dominated by D. trenchii. 2bRAD host genotyping found no genetic structure among reefs, but inshore sites showed a high level of clonality. While none of the measured environmental parameters were correlated with bleaching, 71% of variation in bleaching resistance and 73% of variation in the proportion of D. trenchii was attributable to differences between genets, highlighting the leading role of genetics in shaping natural bleaching patterns. Notably, D. trenchii was rarely dominant in O. faveolata from the Florida Keys in previous studies, even during bleaching. The region‐wide high abundance of D. trenchii was likely driven by repeated bleaching associated with the two warmest years on record for the Florida Keys (2014 and 2015). On inshore reefs in the Upper Florida Keys, O. faveolata was most abundant, had the highest bleaching resistance, and contained the most corals dominated by D. trenchii, illustrating a causal link between heat tolerance and ecosystem resilience with global change.  相似文献   

3.
Massive coral bleaching events associated with high sea surface temperatures are forecast to become more frequent and severe in the future due to climate change. Monitoring colony recovery from bleaching disturbances over multiyear time frames is important for improving predictions of future coral community changes. However, there are currently few multiyear studies describing long‐term outcomes for coral colonies following acute bleaching events. We recorded colony pigmentation and size for bleached and unbleached groups of co‐located conspecifics of three major reef‐building scleractinian corals (Orbicella franksi, Siderastrea siderea, and Stephanocoenia michelini; n = 198 total) in Bocas del Toro, Panama, during the major 2005 bleaching event and then monitored pigmentation status and changes live tissue colony size for 8 years (2005–2013). Corals that were bleached in 2005 demonstrated markedly different response trajectories compared to unbleached colony groups, with extensive live tissue loss for bleached corals of all species following bleaching, with mean live tissue losses per colony 9 months postbleaching of 26.2% (±5.4 SE) for O. franksi, 35.7% (±4.7 SE) for S. michelini, and 11.2% (±3.9 SE) for S. siderea. Two species, O. franksi and S. michelini, later recovered to net positive growth, which continued until a second thermal stress event in 2010. Following this event, all species again lost tissue, with previously unbleached colony species groups experiencing greater declines than conspecific sample groups, which were previously bleached, indicating a possible positive acclimative response. However, despite this beneficial effect for previously bleached corals, all groups experienced substantial net tissue loss between 2005 and 2013, indicating that many important Caribbean reef‐building corals will likely suffer continued tissue loss and may be unable to maintain current benthic coverage when faced with future thermal stress forecast for the region, even with potential benefits from bleaching‐related acclimation.  相似文献   

4.
5.
Coral bleaching and mortality are predicted to increase as climate change‐induced thermal‐stress events become more frequent. Although many studies document coral bleaching and mortality patterns, few studies have examined deviations from the expected positive relationships among thermal stress, coral bleaching, and coral mortality. This study examined the response of >30,000 coral colonies at 80 sites in Palau, during a regional thermal‐stress event in 2010. We sought to determine the spatial and taxonomic nature of bleaching and examine whether any habitats were comparatively resistant to thermal stress. Bleaching was most severe in the northwestern lagoon, in accordance with satellite‐derived maximum temperatures and anomalous temperatures above the long‐term averages. Pocillopora populations suffered the most extensive bleaching and the highest mortality. However, in the bays where temperatures were higher than elsewhere, bleaching and mortality were low. The coral‐community composition, constant exposure to high temperatures, and high vertical attenuation of light caused by naturally high suspended particulate matter buffered the corals in bays from the 2010 regional thermal‐stress event. Yet, nearshore reefs are also most vulnerable to land‐use change. Therefore, nearshore reefs should be given high conservation status because they provide refugia for coral populations as the oceans continue to warm.  相似文献   

6.
Studying the mechanisms that enable coral populations to inhabit spatially varying thermal environments can help evaluate how they will respond in time to the effects of global climate change and elucidate the evolutionary forces that enable or constrain adaptation. Inshore reefs in the Florida Keys experience higher temperatures than offshore reefs for prolonged periods during the summer. We conducted a common garden experiment with heat stress as our selective agent to test for local thermal adaptation in corals from inshore and offshore reefs. We show that inshore corals are more tolerant of a 6‐week temperature stress than offshore corals. Compared with inshore corals, offshore corals in the 31 °C treatment showed significantly elevated bleaching levels concomitant with a tendency towards reduced growth. In addition, dinoflagellate symbionts (Symbiodinium sp.) of offshore corals exhibited reduced photosynthetic efficiency. We did not detect differences in the frequencies of major (>5%) haplotypes comprising Symbiodinium communities hosted by inshore and offshore corals, nor did we observe frequency shifts (‘shuffling’) in response to thermal stress. Instead, coral host populations showed significant genetic divergence between inshore and offshore reefs, suggesting that in Porites astreoides, the coral host might play a prominent role in holobiont thermotolerance. Our results demonstrate that coral populations inhabiting reefs <10‐km apart can exhibit substantial differences in their physiological response to thermal stress, which could impact their population dynamics under climate change.  相似文献   

7.
Coral bleaching, during which corals lose their symbiotic dinoflagellates, appears to be increasing in frequency and geographic extent, and is typically associated with abnormally high water temperatures and solar irradiance. A key question in coral reef ecology is whether local stressors reduce the coral thermal tolerance threshold, leading to increased bleaching incidence. Using tree‐ring techniques, we produced master chronologies of growth rates in the dominant reef builder, massive Montastraea faveolata corals, over the past 75–150 years from the Mesoamerican Reef. Our records indicate that the 1998 mass bleaching event was unprecedented in the past century, despite evidence that water temperatures and solar irradiance in the region were as high or higher mid‐century than in more recent decades. We tested the influence on coral extension rate from the interactive effects of human populations and thermal stress, calculated here with degree‐heating‐months (DHM). We find that when the effects of chronic local stressors, represented by human population, are taken into account, recent reductions in extension rate are better explained than when DHM is used as the sole predictor. Therefore, the occurrence of mass bleaching on the Mesoamerican reef in 1998 appears to stem from reduced thermal tolerance due to the synergistic impacts of chronic local stressors.  相似文献   

8.

Tropical Pacific sea surface temperature is projected to rise an additional 2–3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These “stress bands” are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in conservation efforts to identify temperature-tolerant coral reef communities.

  相似文献   

9.
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light‐dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching‐related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30–75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs.  相似文献   

10.
Understanding the variation in coral bleaching response is necessary for making accurate predictions of population changes and the future state of reefs in a climate of increasing thermal stress events. Individual coral colonies, belonging to inshore patch reef communities of the Florida Keys, were followed through the 2005 mass bleaching event. Overall, coral bleaching patterns followed an index of accumulated thermal stress more closely than in situ temperature measurements. Eight coral species (Colpophyllia natans, Diploria strigosa, Montastraea cavernosa, M. faveolata, Porites astreoides, P. porites, Siderastrea siderea, and Stephanocoenia intersepta), representing >90% of the coral colonies studied, experienced intense levels of bleaching, but responses varied. Bleaching differed significantly among species: Colpophyllia natans and Diploria strigosa were most susceptible to thermal stress, while Stephanocoenia intersepta was the most tolerant. For colonies of C. natans, M. faveolata, and S. siderea, larger colonies experienced more extensive bleaching than smaller colonies. The inshore patch reef communities of the Florida Keys have historically been dominated by large colonies of Montastraea sp. and Colpophyllia natans. These results provide evidence that colony-level differences can affect bleaching susceptibility in this habitat and suggest that the impact of future thermal stress events may be biased toward larger colonies of dominant reef-building species. Predicted increases in the frequency of mass bleaching and subsequent mortality may therefore result in significant structural shifts of these ecologically important communities.  相似文献   

11.
12.
Thermal‐stress events that cause coral bleaching and mortality have recently increased in frequency and severity. Yet few studies have explored conditions that moderate coral bleaching. Given that high light and high ocean temperature together cause coral bleaching, we explore whether corals at turbid localities, with reduced light, are less likely to bleach during thermal‐stress events than corals at other localities. We analyzed coral bleaching, temperature, and turbidity data from 3,694 sites worldwide with a Bayesian model and found that Kd490, a measurement positively related to turbidity, between 0.080 and 0.127 reduced coral bleaching during thermal‐stress events. Approximately 12% of the world's reefs exist within this “moderating turbidity” range, and 30% of reefs that have moderating turbidity are in the Coral Triangle. We suggest that these turbid nearshore environments may provide some refuge through climate change, but these reefs will need high conservation status to sustain them close to dense human populations.  相似文献   

13.
Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non‐framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3 m?2 yr?1. However, non‐framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non‐framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean‐wide dominance of non‐framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non‐framework building coral species will further reduce carbonate production rates below ‘predecline’ levels, resulting in shifts towards negative carbonate budget states and reducing reef growth potential.  相似文献   

14.
Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat‐forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5‐fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching‐induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future.  相似文献   

15.
Climate change threatens organisms in a variety of interactive ways that requires simultaneous adaptation of multiple traits. Predicting evolutionary responses requires an understanding of the potential for interactions among stressors and the genetic variance and covariance among fitness‐related traits that may reinforce or constrain an adaptive response. Here we investigate the capacity of Acropora millepora, a reef‐building coral, to adapt to multiple environmental stressors: rising sea surface temperature, ocean acidification, and increased prevalence of infectious diseases. We measured growth rates (weight gain), coral color (a proxy for Symbiodiniaceae density), and survival, in addition to nine physiological indicators of coral and algal health in 40 coral genets exposed to each of these three stressors singly and combined. Individual stressors resulted in predicted responses (e.g., corals developed lesions after bacterial challenge and bleached under thermal stress). However, corals did not suffer substantially more when all three stressors were combined. Nor were trade‐offs observed between tolerances to different stressors; instead, individuals performing well under one stressor also tended to perform well under every other stressor. An analysis of genetic correlations between traits revealed positive covariances, suggesting that selection to multiple stressors will reinforce rather than constrain the simultaneous evolution of traits related to holobiont health (e.g., weight gain and algal density). These findings support the potential for rapid coral adaptation under climate change and emphasize the importance of accounting for corals’ adaptive capacity when predicting the future of coral reefs.  相似文献   

16.
As the frequency and intensity of coral mortality events increase under climate change, understanding how declines in coral cover may affect the bioerosion of reef frameworks is of increasing importance. Here, we explore decadal‐scale rates of bioerosion of the framework building coral Orbicella annularis by grazing parrotfish following the 1997/1998 El Niño‐related mass mortality event at Long Cay, Belize. Using high‐precision U‐Th dating and CT scan analysis, we quantified in situ rates of external bioerosion over a 13‐year period (1998–2011). Based upon the error‐weighted average U‐Th age of dead O. annularis skeletons, we estimate the average external bioerosion between 1998 and 2011 as 0.92 ± 0.55 cm depth. Empirical observations of herbivore foraging, and a nonlinear numerical response of parrotfish to an increase in food availability, were used to create a model of external bioerosion at Long Cay. Model estimates of external bioerosion were in close agreement with U‐Th estimates (0.85 ± 0.09 cm). The model was then used to quantify how rates of external bioerosion changed across a gradient of coral mortality (i.e., from few corals experiencing mortality following coral bleaching to complete mortality). Our results indicate that external bioerosion is remarkably robust to declines in coral cover, with no significant relationship predicted between the rate of external bioerosion and the proportion of O. annularis that died in the 1998 bleaching event. The outcome was robust because the reduction in grazing intensity that follows coral mortality was compensated for by a positive numerical response of parrotfish to an increase in food availability. Our model estimates further indicate that for an O. annularis‐dominated reef to maintain a positive state of reef accretion, a necessity for sustained ecosystem function, live cover of O. annularis must not drop below a ~5–10% threshold of cover.  相似文献   

17.
Using the same methodology and identical sites, we repeat a study dating from 1973 and quantify cover of hard coral species, soft corals, sponges, hard substratum and soft substratum, and density of a commercially important reef fish species, the graysby Cephalopholis cruentata, along a depth-gradient of 3–36 m on the coral reefs of Curaçao. The objective was to determine the multi-decade change in benthic coral reef cover and structural complexity, and their effect on densities of an associated reef fish species. Total hard coral cover decreased on average from 52% in 1973 to 22% in 2003, representing a relative decline of 58%. During this time span, the cover of hard substratum increased considerably (from 11 to 58%), as did that of soft corals (from 0.1 to 2.2%), whereas the cover of sponges showed no significant change. Relative decline of hard coral cover and of reef complexity was greatest in shallow waters (near the coast), which is indicative of a combination of anthropogenic influences from shore and recent storm damage. Cover of main reef builder coral species (Agaricia spp., Siderastrea siderea, Montastrea annularis) decreased more than that of other species, and resulted in a significant decrease in reef complexity. Although density of C. cruentata was highly correlated to cover of Montastrea and Agaricia in 1973, the loss of coral cover did not show any effect on the total density of C. cruentata in 2003. However, C. cruentata showed a clear shift in density distribution from shallow water in 1973 to deep water in 2003. It can be concluded that the reefs of Curaçao have degraded considerably in the last three decades, but that this has had no major effect on the population size of one commercially important coral-associated fish species.  相似文献   

18.
Insoluble residue concentrations have been measured within colonies of four massive reef corals from seven localities along the Caribbean coast of Panama to determine if detrital sediments, incorporated within the skeletal lattice during growth, record changes in sedimentation over the past twenty years. Amounts of resuspended sediment have increased to varying degrees at the seven localities over the past decades in response to increased deforestation in nearby terrestrial habitats. Preliminary results of correlation and regression analyses reveal few consistent temporal trends in the insoluble residue concentration. Analyses of variance suggest that amounts of insoluble residues, however, differ among environments within species, but that no consistent pattern of variation exists among species. D. strigosa and P. astreoides possess high concentrations at protected localities, S. siderea at localities with high amounts of resuspended sediment, and M. annularis at the least turbid localities. Little correlation exists between insoluble residue concentration and growth band width within species at each locality. Only in two more efficient suspension feeders (S. siderea and D. strigosa) do weak negative correlations with growth band width exist overall.These results indicate that insoluble residue concentrations cannot be used unequivocally in environmental interpretation, until more is known about tissue damage, polyp behavior, and their effects on the incorporation of insolubles in the skeleton during growth in different coral species. Insoluble residue data are highly variable; therefore, large sample sizes and strong contrasts between environments are required to reveal significant trends.  相似文献   

19.
Burke  C. D.  McHenry  T. M.  Bischoff  W. D.  Huttig  E. S.  Yang  W.  Thorndyke  L. 《Hydrobiologia》2004,530(1-3):481-487
The 1995 coral bleaching event in the western Caribbean was the first reported episode that significantly affected the Belize barrier and lagoonal patch reefs. Bleaching was attributed to a 2 mo period of warm water temperatures above 30°C. Near Ambergris Caye, barrier and patch reefs experienced up to 50% bleaching. At Mexico Rocks patch reef complex, the bleaching resulted in changes in reef health, community, and physical structure. Prior to the hyperthermal episode, patch reef surface area consisted of 47% healthy framework coral coverage, 12% secondarily colonized biotic coverage, 35% dead coral surfaces that were degraded by biological activity and physical erosion, and 6%cavities. six months after bleaching, most corals had regained their color, but, owing to coral mortality, areas of surface degradation had increased to an average 49% (p=0.029 based on Kruskal–Wallis analyses). Eighteen months after bleaching, degraded surface areas expanded to 53% (p=0.0366). Although re-coloring indicates rapid recovery for surviving corals, the persistence in dead coral surfaces suggests that reef skeletal structure recovery lags behind that of individual corals. Initial results of framework measurements indicate that bleaching events may result in an ‘imbalance’ in the carbonate production rate of coral reefs and produce mass wasting of the skeletal structure. Remapping of reef skeletal structure should establish quantitative measures for the long-term effects of bleaching on patch reef frameworks.  相似文献   

20.
Coral core records, combined with measurements of coral community structure, were used to assess the long-term impact of multiple environmental stressors on reef assemblages along an environmental gradient. Multiple proxies (luminescent lines, Ba/Ca, δ15N) that reflect different environmental conditions (freshwater discharge, sediment delivery to the nearshore, nutrient availability and transformations) were measured in Porites coral cores collected from nearshore reefs at increasing distance from the intensively agricultural region of Mackay (Queensland, Australia). The corals provide a record (1968–2002) of the frequency and intensity of exposure to terrestrial runoff and fertilizer-derived nitrogen and were used to assess how the present-day coral community composition may have been influenced by flood-related disturbance. Reefs closest to the mainland (5–32 km offshore) were characterized by low hard coral cover (≤10%), with no significant differences among locations. Distinct annual luminescent lines and elevated Ba/Ca values (4.98 ± 0.63 μmol mol−1; mean ± SD) in the most inshore corals (Round Top Island; 5 km offshore) indicated chronic, sub-annual exposure to freshwater and resuspended terrestrial sediment that may have historically prevented reef formation. By contrast, corals from Keswick Island (32 km offshore) indicated episodic, high-magnitude exposure to Pioneer River discharge during extreme flood events (e.g., 1974, 1991), with strongly luminescent lines and substantially enriched coral skeletal δ15N (12–14‰). The reef assemblages at Keswick and St. Bees islands were categorically different from all other locations, with high fleshy macroalgal cover (80.1 ± 7.2% and 62.7 ± 7.1%, respective mean ± SE) overgrowing dead reef matrix. Coral records from Scawfell Island (51 km offshore) indicated little exposure to Pioneer catchment influence: all locations from Scawfell and further offshore had total hard and soft coral cover comparable to largely undisturbed nearshore to middle shelf reefs of the southern Great Barrier Reef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号