首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Posidonia oceanica, a seagrass endemic to the Mediterranean forms extended and extremely persistent meadows. It is a clonal plant with an apparently irregular pattern of flowering events. An extensive bibliographic review allowed the reconstruction of past flowering events of this species around the Mediterranean, with a high degree of confidence for the last 30 years. The data series on annual flowering prevalence (FP, flowering records per total records) and flowering intensity (FI, fraction of flowering shoots) produced have been compared with four series on Sea Surface annual Temperature maxima (SSTmax) obtained for the NW Mediterranean (averaged from the local data series of l'Estartit and Villefranche: 1957–2005) and for the Eastern, Western basin and the whole Mediterranean sea (extracted from NCEP Reynolds interpolated SST maps: 1982–2005). Significant warming trends are detected in the Mediterranean SSTmax series, at a rate of (mean+SE) 0.04±0.01°C yr−1 (R2=0.24, P<0.01, N=24 years), in the Eastern basin series (0.06±0.01°C yr−1, R2=0.43, P<0.001, N=24 years) and in the long SSTmax series of the NW Mediterranean (0.02±0.01 C yr−1, R2=0.12, P<0.02, N=49 years). The magnitudes of the SSTmax anomalies around the absolute warming trend do not increase with time in any SSTmax series. Peaks of FP and FI in the Mediterranean seem to occur each 9–11 years, and coincide with peaks of annual SSTmax. Annual FP and FI increase with the residuals of annual SSTmax warming trend in all Mediterranean basins (FPMED: R2=0.27, P<0.01, N=23; FPNW: R2=0.34, P<0.01, N=31; FPE: R2=0.20; P<0.10, N=23). An outstanding event of P. oceanica flowering across the Mediterranean has been registered in Autumn 2003; 1 month after the highest annual SSTmax recorded in the series. The hypothesis of flowering induction by thermal stress as the possible cause of this relationship is discussed, as well as the potential use of P. oceanica flowering record as early indicator of biological change induced by global sea warming in Mediterranean marine ecosystems.  相似文献   

2.
The Arctic is particularly sensitive to climate change, but the independent effects of increasing atmospheric CO2 concentration (pCO2) and temperature on high‐latitude forests are poorly understood. Here, we present a new, annually resolved record of stable carbon isotope (δ13C) data determined from Larix cajanderi tree cores collected from far northeastern Siberia in order to investigate the physiological response of these trees to regional warming. The tree‐ring record, which extends from 1912 through 1961 (50 years), targets early twentieth‐century warming (ETCW), a natural warming event in the 1920s to 1940s that was limited to Northern hemisphere high latitudes. Our data show that net carbon isotope fractionation (Δ13C), decreased by 1.7‰ across the ETCW, which is consistent with increased water stress in response to climate warming and dryer soils. To investigate whether this signal is present across the northern boreal forest, we compiled published carbon isotope data from 14 high‐latitude sites within Europe, Asia, and North America. The resulting dataset covered the entire twentieth century and spanned both natural ETCW and anthropogenic Late Twentieth‐Century Warming (~0.7 °C per decade). After correcting for a ~1‰ increase in Δ13C in response to twentieth century pCO2 rise, a significant negative relationship (r = ?0.53, P < 0.0001) between the average, annual Δ13C values and regional annual temperature anomalies is observed, suggesting a strong control of temperature on the Δ13C value of trees growing at high latitudes. We calculate a 17% increase in intrinsic water‐use efficiency within these forests across the twentieth century, of which approximately half is attributed to a decrease in stomatal conductance in order to conserve water in response to drying conditions, with the other half being attributed to increasing pCO2. We conclude that annual tree‐ring records from northern high‐latitude forests record the effects of climate warming and pCO2 rise across the twentieth century.  相似文献   

3.
The seagrass Posidonia oceanica is a key engineering species structuring coastal marine systems throughout much of the Mediterranean basin. Its decline is of concern, leading to the search for short‐ and long‐term indicators of seagrass health. Using ArcGIS maps from a recent, high‐resolution (1–4 km) modelling study of 18 disturbance factors affecting coastal marine systems across the Mediterranean (Micheli et al. 2013, http://globalmarine.nceas.ucsb.edu/mediterranean/ ), we tested for correlations with genetic diversity metrics (allelic diversity, genotypic/clonal diversity and heterozygosity) in a meta‐analysis of 56 meadows. Contrary to initial predictions, weak but significantly positive correlations were found for commercial shipping, organic pollution (pesticides) and cumulative impact. This counterintuitive finding suggests greater resistance and resilience of individuals with higher genetic and genotypic diversity under disturbance (at least for a time) and/or increased sexual reproduction under an intermediate disturbance model. We interpret the absence of low and medium levels of genetic variation at impacted locations as probable local extinctions of individuals that already exceeded their resistance capacity. Alternatively, high diversity at high‐impact sites is likely a temporal artefact, reflecting the mismatch with pre‐environmental impact conditions, especially because flowering and sexual recruitment are seldom observed. While genetic diversity metrics are a valuable tool for restoration and mitigation, caution must be exercised in the interpretation of correlative patterns as found in this study, because the exceptional longevity of individuals creates a temporal mismatch that may falsely suggest good meadow health status, while gradual deterioration of allelic diversity might go unnoticed.  相似文献   

4.
Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long‐lived, wide‐ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black‐legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea‐surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large‐scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom‐up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large‐scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself.  相似文献   

5.
Extremely high temperatures represent one of the most severe abiotic stresses limiting crop productivity. However, understanding crop responses to heat stress is still limited considering the increases in both the frequency and severity of heat wave events under climate change. This limited understanding is partly due to the lack of studies or tools for the timely and accurate monitoring of crop responses to extreme heat over broad spatial scales. In this work, we use novel spaceborne data of sun‐induced chlorophyll fluorescence (SIF), which is a new proxy for photosynthetic activity, along with traditional vegetation indices (Normalized Difference Vegetation Index NDVI and Enhanced Vegetation Index EVI) to investigate the impacts of heat stress on winter wheat in northwestern India, one of the world's major wheat production areas. In 2010, an abrupt rise in temperature that began in March adversely affected the productivity of wheat and caused yield losses of 6% compared to previous year. The yield predicted by satellite observations of SIF decreased by approximately 13.9%, compared to the 1.2% and 0.4% changes in NDVI and EVI, respectively. During early stage of this heat wave event in early March 2010, the SIF observations showed a significant reduction and earlier response, while NDVI and EVI showed no changes and could not capture the heat stress until late March. The spatial patterns of SIF anomalies closely tracked the temporal evolution of the heat stress over the study area. Furthermore, our results show that SIF can provide large‐scale, physiology‐related wheat stress response as indicated by the larger reduction in fluorescence yield (SIFyield) than fraction of photosynthetically active radiation during the grain‐filling phase, which may have eventually led to the reduction in wheat yield in 2010. This study implies that satellite observations of SIF have great potential to detect heat stress conditions in wheat in a timely manner and assess their impacts on wheat yields at large scales.  相似文献   

6.
Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night‐time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in the response of NDVI to changes in day‐ vs. night‐time temperatures. For instance, while higher daytime temperature (Tmax) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between Tmax and NDVI is much larger in spring (41% of area in boreal zone – total area 12.6 × 10km2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in Tmax, increases in Tmax tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night‐time temperature (Tmin) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day‐ and night‐time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation‐climate models.  相似文献   

7.
Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta‐analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life‐history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single‐stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.  相似文献   

8.
Seagrass meadows are vital ecosystems in coastal zones worldwide, but are also under global threat. One of the major hurdles restricting the success of seagrass conservation and restoration is our limited understanding of ecological feedback mechanisms. In these ecosystems, multiple, self‐reinforcing feedbacks can undermine conservation efforts by masking environmental impacts until the decline is precipitous, or alternatively they can inhibit seagrass recovery in spite of restoration efforts. However, no clear framework yet exists for identifying or dealing with feedbacks to improve the management of seagrass ecosystems. Here we review the causes and consequences of multiple feedbacks between seagrass and biotic and/or abiotic processes. We demonstrate how feedbacks have the potential to impose or reinforce regimes of either seagrass dominance or unvegetated substrate, and how the strength and importance of these feedbacks vary across environmental gradients. Although a myriad of feedbacks have now been identified, the co‐occurrence and likely interaction among feedbacks has largely been overlooked to date due to difficulties in analysis and detection. Here we take a fundamental step forward by modelling the interactions among two distinct above‐ and belowground feedbacks to demonstrate that interacting feedbacks are likely to be important for ecosystem resilience. On this basis, we propose a five‐step adaptive management plan to address feedback dynamics for effective conservation and restoration strategies. The management plan provides guidance to aid in the identification and prioritisation of likely feedbacks in different seagrass ecosystems.  相似文献   

9.
1. The response of a phytopathogen vector to pathogen‐induced plant volatiles was investigated, as well as the response of the phytopathogen vector's parasitoid to herbivore‐induced plant volatiles released from plants with and without drought stress. 2. These experiments were performed with Asian citrus psyllid (Diaphorina citri), vector of the plant pathogen Candidatus Liberibacter asiaticus (CLas) and its parasitoid Tamarixia radiata as models. Candidatus Liberibacter asiaticus is the presumed causal pathogen of huanglongbing (HLB), also called citrus greening disease. 3. Diaphorina citri vectors were attracted to headspace volatiles of CLas‐infected citrus plants at 95% of their water‐holding capacity (WHC); such attraction to infected plants was much lower under drought stress. Attraction of the vector to infected and non‐stressed plants was correlated with greater release of methyl salicylate (MeSA) as compared with uninfected and non‐stressed control citrus plants. Drought stress decreased MeSA release from CLas‐infected plants as compared with non‐stressed and infected plants. 4. Similarly, T. radiata was attracted to headspace volatiles released from D. citri‐infested citrus plants at 95% of their WHC. However, wasps did not show preference between headspace volatiles of psyllid‐infested and uninfested plants when they were at 35% WHC, suggesting that herbivore‐induced defences did not activate to recruit this natural enemy under drought stress. 5. Our results demonstrate that herbivore‐ and pathogen‐induced responses are environmentally dependent and do not occur systematically following damage. Drought stress affected both pathogen‐ and herbivore‐induced plant volatile release, resulting in concomitant decreases in behavioural response of both the pathogen's vector and the vector's primary parasitoid.  相似文献   

10.
The oxidative stress imposed by nutritional variations in selenium (Se) has plausible role in reproductive toxicology and affects the reproductive potential. Also, the expression of heat shock proteins (HSPs) is a highly regulated event throughout the process of spermatogenesis and is modulated by stressful stimuli. This prompted us to investigate the possibility that Se‐induced oxidative stress may affect the fertility status by altering the expressions of the constitutive and inducible HSP70 proteins, having crucial role in spermatogenesis. Different Se status‐deficient, adequate, and excess, male Balb/c mice were created by feeding yeast‐based Se‐deficient diet (group I) and deficient diet supplemented with Se as sodium selenite at 0.2 and 1 ppm Se (group II and III) for a period of 8 weeks. After completion of the diet‐feeding schedule, a significant decrease in the Se and glutathione peroxidase (GSH‐Px) levels was observed in the Se‐deficient group (I), whereas Se‐excess group (III) demonstrated an increase. Increased levels of reactive oxygen species, malondialdehyde, and alterations in the redox status in both groups I and III indicated oxidative‐stressed conditions. There was an overall reduced fertility status in mice supplemented with Se‐deficient and Se‐excess diet. The mRNA and protein expression of HSP70 was found to be elevated in these two groups, whereas the expression patterns of HSP70‐2 and MSJ‐1 demonstrated a reverse trend. In vitro CDC2 kinase assay showed reduced kinase activity in group I and group III. These findings suggest that Se‐induced oxidative stress by differentially regulating various HSP70s can affect its downstream factors having crucially important role in differentiation of germ cells and completion of spermatogenesis. Therefore, it can provide an insight into the mechanism(s) by which the oxidative stress–induced reproductive toxicity can lead to increased apoptosis/growth arrest and infertility. This will thus add new dimensions to the molecular mechanism underlying the human male infertility and open new vistas in the development of various chemo‐preventive methods. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:125–136, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20276  相似文献   

11.
12.
Adaptive response is the ability of an organism to better counterattack stress‐induced damage in response to a number of different cytotoxic agents. Monosodium L‐glutamate (MSG), the sodium salt of amino acid glutamate, is commonly used as a food additive. We investigated the effects of MSG on the life span and antioxidant response in Drosophila melanogaster (D. melanogaster). Both genders (1 to 3 days old) of flies were fed with diet containing MSG (0.1, 0.5, and 2.5‐g/kg diet) for 5 days to assess selected antioxidant and oxidative stress markers, while flies for longevity were fed for lifetime. Thereafter, the longevity assay, hydrogen peroxide (H2O2), and reactive oxygen and nitrogen species levels were determined. Also, catalase, glutathione S‐transferase and acetylcholinesterase activities, and total thiol content were evaluated in the flies. We found that MSG reduced the life span of the flies by up to 23% after continuous exposure. Also, MSG increased reactive oxygen and nitrogen species and H2O2 generations and total thiol content as well as the activities of catalase and glutathione S‐transferase in D. melanogaster (P < .05). In conclusion, consumption of MSG for 5 days by D. melanogaster induced adaptive response, but long‐term exposure reduced life span of flies. This study may therefore have public health significance in humans, and thus, moderate consumption of MSG is advocated by the authors.  相似文献   

13.
14.
15.
16.
17.
To obtain a better understanding of responsive mechanism of plant cells in response to hydrodynamic mechanical stress, a metabolic profiling approach was used to profile metabolite changes of Taxus cuspidata cells under laminar shear stress. A total of 65 intracellular metabolites were identified and quantified, using gas chromatography coupled to time‐of‐flight mass spectrometry. Potential biomarkers were found by the principal component analysis as well as partial least squares combined with variable influence in the projection. Trehalose, sorbitol, ascorbate, sucrose, and gluconic acid were mainly responsible for the discrimination between shear stress induced cells and control cells. Further analysis by mapping measured metabolite concentrations onto the metabolic network revealed that shear stress imposed restrictions on primary metabolic pathways by inhibiting tricarboxylic acid cycle, glycolysis, and N metabolism. To adapt to the shear condition, cells responded by starting defensive programs. These defensive programs included coinduction of glycolysis and sucrose metabolism, accumulation of compatible solutes, and antioxidative strategy. A strategy of defense mechanisms at the level of metabolites for T. cuspidata cells when challenged with the shear stress was proposed. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
Helminth‐derived products have recently been shown to prevent the development of inflammatory diseases in mouse models. However, most identified immunomodulators from helminthes are mixtures or macromolecules with potentially immunogenic side effects. We previously identified an immunomodulatory peptide called SJMHE1 from the HSP60 protein of Schistosoma japonicum. In this study, we assessed the ability of SJMHE1 to affect murine splenocytes and human peripheral blood mononuclear cells (PBMCs) stimulated by toll‐like receptor (TLR) ligands in vitro and its treatment effect on mice with collagen‐induced arthritis (CIA). We show that SJMHE1 not only modulates the cytokine production of murine macrophage (MΦ) and dendritic cell but also affects cytokine production upon coculturing with allogeneic CD4+ T cell. SJMHE1 potently inhibits the cytokine response to TLR ligands lipopolysaccharide (LPS), CpG oligodeoxynucleotides (CpG) or resiquimod (R848) from mouse splenocytes, and human PBMCs stimulated by LPS. Furthermore, SJMHE1 suppressed clinical signs of CIA in mice and blocked joint erosion progression. This effect was mediated by downregulation of key cytokines involved in the pathogenesis of CIA, such as interferon‐γ (IFN‐γ), tumour necrosis factor‐α (TNF‐α), interleukin (IL)‐6, IL‐17, and IL‐22 and up‐regulation of the inhibitory cytokine IL‐10, Tgf‐β1 mRNA, and CD4+CD25+Foxp3+ Tregs. This study provides new evidence that the peptide from S. japonicum, which is the ‘safe’ selective generation of small molecule peptide that has evolved during host–parasite interactions, is of great value in the search for novel anti‐inflammatory agents and therapeutic targets for autoimmune diseases.  相似文献   

19.
The potential of reef‐building corals to adapt to increasing sea‐surface temperatures is often debated but has rarely been comprehensively modeled on a region‐wide scale. We used individual‐based simulations to model adaptation to warming in a coral metapopulation comprising 680 reefs and representing the whole of the Central Indo‐West Pacific. Encouragingly, some reefs—most notably Vietnam, Japan, Taiwan, New Caledonia and the southern half of the Great Barrier Reef—exhibited high capacity for adaptation and, in our model, maintained coral cover even under a rapid “business‐as‐usual” warming scenario throughout the modeled period (200 years). Higher resilience of these reefs was observed under all tested parameter settings except the models prohibiting selection and/or migration during warming. At the same time, the majority of reefs in the region tended to collapse within the first 100 years of warming. The adaptive potential (odds of maintaining high coral cover) of a given reef could be predicted based on two metrics: the reef's present‐day temperature, and the proportion of recruits immigrating from warmer locations. The latter metric explains the most variation in adaptive potential, and significantly correlates with actual coral cover changes observed throughout the region between the 1970s and the early 2000s. These findings will help prioritize coral conservation efforts and plan assisted gene flow interventions to boost the adaptive potential of specific coral populations.  相似文献   

20.
Although it is widely recognized that climate change will require a major spatial reorganization of forests, our ability to predict exactly how and where forest characteristics and distributions will change has been rather limited. Current efforts to predict future distribution of forested ecosystems as a function of climate include species distribution models (for fine‐scale predictions) and potential vegetation climate envelope models (for coarse‐grained, large‐scale predictions). Here, we develop and apply an intermediate approach wherein we use stand‐level tolerances of environmental stressors to understand forest distributions and vulnerabilities to anticipated climate change. In contrast to other existing models, this approach can be applied at a continental scale while maintaining a direct link to ecologically relevant, climate‐related stressors. We first demonstrate that shade, drought, and waterlogging tolerances of forest stands are strongly correlated with climate and edaphic conditions in the conterminous United States. This discovery allows the development of a tolerance distribution model (TDM), a novel quantitative tool to assess landscape level impacts of climate change. We then focus on evaluating the implications of the drought TDM. Using an ensemble of 17 climate change models to drive this TDM, we estimate that 18% of US ecosystems are vulnerable to drought‐related stress over the coming century. Vulnerable areas include mostly the Midwest United States and Northeast United States, as well as high‐elevation areas of the Rocky Mountains. We also infer stress incurred by shifting climate should create an opening for the establishment of forest types not currently seen in the conterminous United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号