首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of roost selection by northern yellow bats (Lasiurus intermedius) is limited to a small number of known roost locations. Yet knowledge of basic life history is fundamental to understanding past response to anthropogenic change and to predict how species will respond to future environmental change. Therefore, we examined male northern yellow bat roost selection on 2 Georgia, USA, barrier islands with different disturbance histories. Sapelo Island has a history of extensive disturbance and is dominated by pine (Pinus spp.) forests; Little Saint Simons Island has a limited disturbance history with maritime oak (Quercus spp.) forest as the dominant cover type. From March–July 2012 and 2013, we radio-tracked 35 adult male northern yellow bats to diurnal roosts and modeled roost characteristics at the plot and landscape scales. We located 387 roosts, of which 95% were in Spanish moss (Tillandsia usneoides) hanging in hardwood trees. On both islands, bats selected roost trees with larger diameters than surrounding trees and selected roost locations with greater open flight space (i.e., low midstory clutter) underneath. Roosts were located farther from open areas on Sapelo and closer to fresh water on Little Saint Simons compared to random locations. Lower availability of hardwood forest on Sapelo may have resulted in small-scale roost site selection (i.e., plot level) despite potential increased costs of commuting to water and open areas for foraging. In contrast, greater availability of hardwood forest on Little Saint Simons likely allowed selection of roosts closer to fresh water, which provides foraging and drinking opportunities. Our results indicate that mature hardwood trees in areas with low midstory clutter are important in male northern yellow bat roost selection, but landscape-level features have varying influences on roost selection, likely as a result of differences in disturbance history. Therefore, management will differ depending on the landscape context. Further research is needed to examine roost selection by females, which may have different habitat requirements. © 2020 The Wildlife Society.  相似文献   

2.
P. A.R. Hockey 《Ostrich》2013,84(1-3):52-57
Hockey P. A. R. 1985. Observations on the communal roosting of African Black Oystercatchers. Ostrich 56: 52–57.

There are currently three main hypotheses for the adaptive significance of avian communal roosts: physiological advantages, predator avoidance and information centres. The African Black Oystercatcher Haematopus moquini is territorial throughout the year and forms communal roosts during the nonbreeding season, but does not breed communally. Roosts generally are small, and site fidelity is high. Roosts are normally sited on a rocky promontory with adjacent offshore rocks (west coast), or in flat areas with extensive all-round visibility. The main predators of African Black Oystercatchers are nocturnal terrestrial mammals and nocturnal communal roosts are larger and more tightly packed than daytime roosts. Breeding birds do not roost communally during the breeding season and at this time of year mortality due to mammal predators at a study site in Saldanha Bay was greatest (X2 = 9.46; p<0.01). It appears therefore that predator avoidance is an important adaptive feature of communal roosting in this species.  相似文献   

3.
Abstract: Knowledge of factors that influence habitat selection by wildlife leads to better understanding of habitat ecology and management. Therefore, we compared microclimate and predation risk as factors influencing the selection of stopping points (mid-day coverts, nocturnal roosts) by northern bobwhites (Colinus virginianus). Stopping points were located using radiomarked bobwhites in the Texas Panhandle, USA, during 2002–2003. We obtained blackbody temperatures of microclimates and assessed predation risk (angles of obstruction for aerial predators, vegetation profiles for terrestrial predators) at stopping points and paired random points. Summer coverts showed fewer degree-minutes of hyperthermic exposure (blackbody temperatures >39°C; = 655.0, SE = 4.1 for coverts, = 2,255.5, SE = 4.9 for random; 1200–1600 hr) and a lower risk to predators (e.g., 95% confidence intervals [CIs] of angles of obstruction = 87.8–90.8° for coverts, 55.9–70.6° for random). Summer roost temperatures were similar to paired random sites ( = −13.9°C, SE = 0.6 for roost, = 13.9°C, SE = 0.7 for random) as were winter roost temperatures ( = −1.3°C, SE = 0.7 for roosts, = −1.4°C, SE = 0.8 for random). There were minor issues of habitat selection of winter or summer roosts based on predation risk (e.g., 95% CIs of vegetation profiles of summer roosts and random sites did not overlap at lower strata). We concluded other selection factors likely exist for winter roosts because microclimate and predation risk assessments between winter roosts and random sites showed no difference. Similarly, other selection factors may exist for summer roosts, as they showed only a weak difference in terrestrial predation risk and no difference in microclimate in comparison to random sites. We concluded microclimate was the primary selection factor for coverts because prevention of hyperthermia necessitated that bobwhites select cooler microclimates within the study area.  相似文献   

4.
Roosting is an important component of wild turkey (Meleagris gallopavo; turkey) ecology as roosts provide security from predators and inclement weather. Males call (gobble) from roosts during the reproductive season, and roost locations are important for maximizing access to females and transmission of calls across the landscape, while also minimizing predation risk. Spring hunting of male turkeys occurs during the reproductive season, and hunting activity influences male behaviors and calling. Because roost sites are important for wild turkey ecology, we evaluated roost site selection and fidelity of male turkeys relative to land cover types, vegetative characteristics, and the presence of hunting activity during 2017–2018 in Georgia, USA. Prior to onset of hunting, males selected roosts nearest to hardwood and pine (Pinus spp.) forests. Roost site fidelity was low and distances between roosts were large. After onset of hunting, males selected pine forests less and exhibited greater plasticity in roost selection while fidelity remained minimal, suggesting that males may have altered selection to mitigate risk from hunting while maintaining the strategy of moving about their ranges and roosting at different sites on consecutive nights. Future research should examine potential effects of hunting-induced shifts in resource selection on other aspects of male turkey behavior and ecology. © 2019 The Wildlife Society.  相似文献   

5.
<正>大多数种类的蝙蝠不会整个晚上都进行觅食,通常在觅食期间有一段长短不一的时间停留在临时地休息,此为夜栖息行为(Hatfield,1937;Krutzsch,1954;Barbour and Davis,1969;Kunz,1973,1974;Hirshfeld et al.,1977)。蝙蝠在夜栖息地进食(Vaughan,1976;Funakoshi and Maeda,2003)、休息并消化食物(Brigham,1991;Funakoshi and Maeda,2003),甚至社会交流(Kunz,1982;Kunz and Lumsden,2003)。不同种类的蝙蝠  相似文献   

6.
Several species of Nearctic-Neotropical migratory songbirds appear to form roosting aggregations while on their wintering grounds but little is understood about the ecology of this behavior. We studied roosting behavior and patterns of roost habitat selection in the northern waterthrush Seiurus noveboracensis , during three winter years (2002–2004) in Puerto Rico using radio telemetry. Overall, red mangrove was selected for roosting disproportionately to its availability. Regardless of diurnal habitat used, 87% (n=86) of northern waterthrush selected dense stands of coastal red mangrove for roost sites. Individuals traveled up to 2 km to access roost sites in this habitat on a daily basis. The majority (8 of 14) of individuals roosted alone, while others roosted in loose aggregations near communal roosts of gray kingbirds Tyrannus dominicensis . Patterns of roost site selection did not vary by sex. Individuals showing aggressive response to playback during the day, however, selected roost sites significantly closer to the coast. Several additional migratory and resident bird species also used red mangrove for night-time roosting habitat. Red mangrove may be a critical nocturnal roosting habitat for bird populations that live in proximity to coastal areas in the Neotropics. The benefits of nocturnal roosting behavior as well as why individuals appear to select red mangrove remain poorly understood.  相似文献   

7.
During the highest spring tides the intertidal sediment flats of estuaries are fully inundated at high water, and waders have no choice but to move to supratidal roosts, e.g. on open farmland, saltpans or beaches. However, in many estuaries during the lowest neap or intermediate tides there are sectors of upper intertidal sediment flats that remain exposed even at the peak of high water, and so waders have the choice of roosting either there or in supratidal sites. In the Tagus Estuary, Portugal, as elsewhere, waders use both types of roosts during high water. Our main objective was to understand what makes waders opt for one of these two types of available roosts. We monitored wader use of saltpans and intertidal roosts from spring to neap tides, and measured foraging and alarm behaviour, prey availability and disturbance by predators. Most of the wader species studied chose intertidal (mudflat) roosts whenever these were available, and only roosted in saltpans during the peak of spring tides. We hypothesized that this preference was explained either by an attempt (i) to continue feeding into the high water period, or (ii) to minimize predation risk. Extending feeding time into the high water period did not seem to be very relevant for roost choice because both prey availability and foraging activity were low in both types of roosts. However, predator disturbance was several times higher in the saltpans than in the intertidal roosts, suggesting that this factor may be the determinant in the choice of roost type.  相似文献   

8.
Human infrastructure and disturbance play an important role when animals select resources in human-modified landscapes. Theory predicts that animals trade food intake against costs of movement or disturbance to optimize net energy gain and fitness, but other necessary resources may also constrain the decisions, e.g. when animals repeatedly need to return to a central location, such as a nest, waterhole or night roost. Central place foraging theory states that the probability of occurrence of an animal decreases with the distance to the central location while selectivity for food items or foraging sites providing high net energy gain should increase with distance. We studied foraging patterns of common cranes Grus grus feeding in an agricultural landscape adjacent to a wetland to which they return for night roost. We used availability of spilled grains on harvested fields and distance to human settlement as proxy for site quality (i.e. increased likelihood of increased net energy gain with increased food availability and less disturbance). As predicted by theory, our results clearly show that cranes were more likely (more than twice as high resource selection function scores) to select foraging sites close to roosts. However, contrary to predictions, the selection of high quality sites in terms of high food availability decreased with distance to roost sites. Nevertheless, our results indicate that cranes were more likely to select sites with low risk of human disturbance far from roost sites, and were more tolerant to disturbance close to roost sites. How different species respond to the local and environmental conditions will increase the understanding of the species’ resource requirement, and also where in the landscape to prioritize conservation or management actions (e.g. mitigation of human disturbance and crop damage prevention to sustain agricultural production).  相似文献   

9.
We studied communal roosting in the Common Myna (Acridotheres tristis) in the light of the recruitment centre hypothesis and predation at the roost. The number and sizes of flocks departing from and arriving at focal roosts were recorded over a two year period. We also recorded the sizes and behaviour of foraging flocks. We found that flock sizes of birds departing from roosts at sunrise were larger than those at the feeding site, suggesting that there was no recruitment from the roosts. Flocks entering the roosts during sunset were larger on average than those leaving the following sunrise, suggesting no consolidation of flocks in the morning. Flocks entering the roosts at sunset were also larger on average than those that had left that sunrise, although there was no recruitment at the feeding site. There was no effect of group size on the proportion of time spent feeding. Contrary to expectation, single birds showed lower apparent vigilance than birds that foraged in pairs or groups, possibly due to scrounging tactics being used in the presence of feeding companions. Thus, the recruitment centre hypothesis did not hold in our study population of mynas. Predation at dawn and dusk were also not important to communal roosting: predators near the roosts did not result in larger flocks, and resulted in larger durations of arrival/departure contrary to expectation. Since flock sizes were smallest at the feeding site and larger in the evening than in the morning, but did not coincide with predator activity, information transfer unrelated to food (such as breeding opportunities) may possibly give rise to the evening aggregations.  相似文献   

10.
Many aspects of animal behaviour are affected by real‐time changes in the risk of predation. This conclusion holds for virtually all taxa and ecological systems studied, but does it hold for bats? Bats are poorly represented in the literature on anti‐predator behaviour, which may reflect a lack of nocturnal predators specialized on bats. If bats actually experience a world with minimal anti‐predator concerns, then they will provide a unique contrast within the realm of vertebrate ecology. Alternatively, such predator‐driven behaviour in bats may not yet be fully understood, given the difficulties in working with these highly mobile and nocturnal animals. We provide a wide‐ranging exploration of these issues in bat behaviour. We first cover the basic predator‐prey information available on bats, both on potential predators and the ways in which bats might perceive predators and respond to attacks. We then cover work relevant to key aspects of bat behaviour, such as choice of daytime roosts, the nature of sleep and torpor, evening roost departures, moonlight avoidance, landscape‐related movement patterns, and habitat selection. Overall, the evidence in favour of a strong influence of predators on bat behaviour is equivocal, with the picture clouded by contradictory results and a lack of information on potential predators and the perception of risk by bats. It seems clear that day‐active bats run a considerable risk of being killed by diurnal raptors, which are able to capture bats with relative ease. Thus, bats taking advantage of a pulse of insects just prior to sunset are likely taking risks to gain much‐needed energy. Further, the choice of daytime roosts by bats is probably strongly influenced by roost safety. Few studies, however, have directly addressed either of these topics. As a group, insectivorous temperate‐zone bats show no clear tendency to avoid apparently risky situations, such as activity on moonlit nights. However, some observations are consistent with the idea that predation risk affects choice of movement paths and feeding areas by temperate‐zone bats, as well as the timing of roost departures. The behaviour of tropical bats, on the other hand, seems more generally influenced by predators; this is especially true for tropical nectarivores and frugivores, but also for insectivorous bats. Presumably there are more serious predators on bats in the tropics (e.g. specialized raptors or carnivorous bats), but the identity of these predators is unclear. More information is needed to assess fully the influence of predators on bat behaviour. There is much need for work on the ways in which bats perceive predators via auditory, visual, and olfactory cues, and whether bats have some knowledge of the risks posed by different predators. Also needed is information on how predators attack bats and how bats react to attacking predators. Difficult to obtain, but of critical value, will be information on the nature of the predation risk experienced by bats while away from roosts and during the full darkness of night.  相似文献   

11.
Roost requirements of most North American forest bats are well-documented, but questions remain regarding the ultimate mechanisms underlying roost selection. Hypotheses regarding roost selection include provision of a stable microclimate, space for large colonies, protection from predators, and proximity to foraging habitat, among others. Although several hypotheses have been proposed, specific mechanisms likely vary by species and geographic region. Rafinesque's big-eared bat (Corynorhinus rafinesquii) commonly roosts in trees with large basal hollows in the Coastal Plain of the southeastern United States. Our objective was to weigh evidence for hypotheses regarding selection of diurnal summer roosts by Rafinesque's big-eared bat at 8 study sites across the Coastal Plain of Georgia, USA. We used transect searches and radiotelemetry to locate roosts and measured 22 characteristics of trees, tree cavities, and surrounding vegetation at all occupied roosts and for randomly selected unoccupied trees. We evaluated 10 hypotheses using single-season occupancy models and used Akaike's information criterion to select the most parsimonious models. We located 170 tree roosts containing approximately 870 bats for our analysis. The best supported model predicted bat presence from cavity size, interior wall texture, and number of entrances. Because large cavities allow bats to fly and smooth walls impede attacks by terrestrial predators, our results are consistent with the hypothesis that bats select roosts that allow them to evade predators. However, data on predation rates are needed for a conclusive determination. Because trees suitable as roosts for Rafinesque's big-eared bat are rare in the landscape, protection of suitable forested wetland habitat is essential to provide current and long-term roost tree availability. © 2012 The Wildlife Society.  相似文献   

12.
Theodore H.  Fleming 《Ibis》1981,123(4):463-476
This study presents data on the roosting and feeding behaviour of Pied Wagtails around Oxford, England. During the winter of 1977–78, from two to 1200 wagtails roosted in a Phragmites reed-bed. Use of this roost was greatest during mild, windless weather and the birds apparently used alternate roosts during harsh weather. Movement between roosts sometimes occurred between sunset and sunrise. Morning ‘departure group’ size, number leaving per unit time and diversity of departure directions increased with roost size. Wagtails quickly left the vicinity in the morning. In the afternoon, they joined one or more pre-roost gatherings before entering the roost for the night. Behaviour upon arrival at the roost was variable: birds might enter the reeds quickly or circle in large groups before landing. Aerial revolutions and generally ‘restless’ behaviour often accompanied increases in roost size. Wagtail feeding rates varied significantly between and within habitats. Number of wagtails feeding on the flooded Port Meadow, located 2–3 km south of the main roost, varied from about five to over 60 on different days; these numbers were not correlated with feeding rates. In contrast, the number of birds feeding at a sewage farm was nearly constant all winter. Some wagtails show high fidelity to feeding areas but others do not. Five short-term food supplementation experiments indicated that wagtails knowledgeable about a dense food source are not followed in the morning by naive birds. Results of this study are discussed in relation to the predation, physiology and information centre hypotheses that have been suggested to explain communal roosting in birds. I conclude that the communal roosting system of Pied Wagtails has physiological and anti-predator functions. Wagtails appear to choose certain roosts because of the protection that they provide from adverse climate and predation.  相似文献   

13.
Communal roosting has been studied extensively in birds, but the mechanisms and functions of this taxonomically widespread behaviour pattern remain poorly understood. We studied the roosting behaviour of rubyspot damselflies, Hetaerina americana, in relation to sex and territorial status, and conducted field experiments to test for specific mechanisms of roost formation and maintenance. Both sexes tended to return close to their previous night's roost, but only males were significantly more roost site faithful than chance expectations based on individual day ranges. Males were more roost site faithful when they held mating territories. After acquiring a territory, males usually began roosting closer to the territory after a delay of a few days. Roosts were not located at sites that reduced the daily commuting distance between hunting areas and territories; males generally hunted closer to their territories than to their roosts. In field experiments, sites 'seeded' with synthetic models of male rubyspots attracted more recruits than vacant control sites and control sites seeded with nonrubyspot (clear-winged) damselfly models. Sites seeded repeatedly with rubyspot models often remained popular for roosting after the models were removed, suggesting that the models established new traditional roosts. These results indicate that conspecific attraction and individual spatial memory together may be sufficient to explain, at a proximate level, the traditional night roost aggregations of this species. We discuss these results in relation to functional hypotheses for roost site choice and fidelity. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

14.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

15.
Migrant shorebirds operate within a series of landscapes and must adjust their daily activities to achieve seasonal time and energy objectives. Night roosts are essential landscape elements that provide safety from predators for many shorebird species. What costs migrants incur to use night roosts and how these costs vary across staging sites are poorly understood. We tracked 42 adult whimbrels Numenius phaeopus with satellite transmitters and used night locations to delineate 39 night roosts during spring and fall migration. We used daytime locations to measure round‐trip commuting distances between night roosts and foraging areas and estimated daily commuting costs including distance, time and metabolic energy expenditure. We identified night roosts on offshore islands (n = 20) and onshore locations including along habitat edges (n = 13) and on topographic highs within extensive marshes (n = 6). Mean daily commuting costs varied between roosts. Whimbrels took 3.9–52.1 min (median = 15.2) to fly 3.1–42.2 km (median = 12.3) which costs 6.1–82.4 kj (median = 22.3) in lean mass energy expenditure and 8.1–109.2 kj (median = 31.5) in leaving mass energy. Birds using offshore roosts had twice the commuting distance and associated costs compared to those using onshore roosts. The contribution of commuting costs to the premigratory energy budget ranged from 1.5 to 18.8% with costs for nearly 30% of roosts exceeding 10%. Commuting costs to and from night roosts appear to be biologically relevant within some staging sites and should be considered among other constraints faced by migrants during stopover periods when food or time is limiting.  相似文献   

16.
Direct tracking methods in combination with remote sensing data allow examination of habitat use by birds during migration. Species that roost communally during migration, such as some swallows, form large aggregations that can attract both avian and terrestrial predators. However, the extent to which they might use patchy habitats that could reduce predation risk during migration is unknown. We tested the hypothesis that Purple Martins (Progne subis) use forest islands (patches of suitable forest habitat surrounded by unsuitable habitat) as roost sites during migration between breeding sites in North America and overwintering sites in South America. We used high‐precision (< 10 m), archival GPS units deployed and retrieved during the 2015 and 2016 breeding seasons, respectively, at 12 colonies located across eastern North America. We found that Purple Martins roosted in forest islands more often than expected based on availability during both spring and fall migration. Despite an apparent association with urban habitats by Purple Martins based on observational and radar data in North America during the fall, the roost locations we identified during spring and fall migration were not more closely associated with urban areas than random locations. The use of forest islands during both spring and fall migration suggest that Purple Martins may use these habitats to reduce predation risk during migration. Our results suggest that some species of birds may use similar habitats as stopover sites during migration and that patches of forest habitat may be important conservation targets for Purple Martins and other species. Identifying habitat use during migration represents an important advance in support of full annual‐cycle conservation of Purple Martins and other migratory species with declining populations.  相似文献   

17.
Shade coffee plantations are considered important habitats for frugivorous bats. However, it is not known if bats use this agricultural habitat for shelter, food resources, or both. This study addresses these questions using the highland yellow‐shouldered bat (Sturnira hondurensis) as an example. Twenty‐six adult individuals of S. hondurensis were captured, 50 percent in tropical montane cloud forest (TMCF) and 50 percent in shade coffee plantations (SCP) in Veracruz, Mexico, and each was fitted with a radio transmitter for locating roosts and feeding areas. Data were obtained from 24 of them. The fieldwork was conducted between October 2010 and October 2011 covering all seasons. Twenty‐two day roosts were located in the cavities of twelve different species of tree. Roosts located in TMCF differed significantly from those in SCP, having a smaller crown area and a greater species richness and density of plants around the roost. In SCP, both the average home range and the average core use area were smaller than in TMCF, but the differences were not statistically significant. Distances travelled by bats were generally longer and more variable in the SCP; the distance between capture site and foraging site was significantly greater in SCP than in TMCF. In SCP, there were fewer understory chiropterochorous plants, which are the main item in the diet of this bat and many other sympatric species of frugivorous bats. Although S. hondurensis does use roosts and foraging sites in the SCP, it is important to note that this species and others with similar requirements primarily depend on the preservation of intact forest adjacent to modified landscapes, where roosts and fruit are constantly available in abundance. Management practices should guarantee a greater density and diverse of trees and the preservation of understory plants with fruits in the coffee plantations that allow a long‐term survival of frugivorous bats populations.  相似文献   

18.
Abstract

Lesser short‐tailed bats (Mystacina tuberculata) have recently been translocated to Kapiti Island in an attempt to form a new population of this threatened species. However, the island's vegetation is regenerating, and there was doubt that the forests provided enough large trees with cavities for bats to roost in. This study measured the availability of tree‐trunk cavities of the right size for potential roost sites on Kapiti Island, and assessed if habitat restoration would be required to increase the translocation's chance of success. first, trees with cavities accessible to us were sampled in six of Kapiti Island's forest types. Size variables known to affect roost site selection by lesser short‐tailed bats at the tree and cavity level were measured. Trees were classified as containing cavities that could potentially provide suitable roosts if their values for all variables measured fell within the range of roosts used by lesser short‐tailed bats in natural populations. Roosts were classified as suitably sized for solitary bats or for colonies, using measurements from both types of roosts in natural populations. Second, the density of these potential roost cavities was calculated. Cavities of a size potentially suitable for colonies were found in four of the six forest types at densities ranging from 3.2 ± 3.2 Se to 52.4 ± 14.0 trees per ha. density of potential solitary roosts was much higher. Not all potential cavities will be suitable because they may be damp, poorly insulated, or have an unsuitable microclimate. Nevertheless, our estimates indicated that the two most extensive forest types each contained thousands of potential cavities of a size suitable for colonies of lesser short‐tailed bats. In addition, there were tens of thousands of cavities large enough to shelter solitary bats. Roost habitat restoration appears unnecessary to assist translocated Mystacina tuberculata on Kapiti Island.  相似文献   

19.
Closely related, ecologically similar species often roost in distinctly different habitats, and roosting patterns also vary within species in relation to sex, age and season. The causes of such variation are not well understood at either a proximate or ultimate level. We studied communal roosting in two congeneric species of Prionostemma harvestmen at a rainforest site in Nicaragua. Previous research showed that Prionostemma sp. 1 forms male‐biased communal roosts in tree‐root cavities, while Prionostemma sp. 2 forms communal roosts of variable but temporally stable sex ratios on spiny palms. Here, we investigate potential mechanisms underlying variation in roosting site choice between and within these syntopic species. First, we present the results of a field experiment designed to probe the mechanism underlying skewed roost sex ratios in Prionostemma sp. 2. Previous studies have suggested that these harvestmen use conspecific scent to locate communal roosts and that new roosts can be established via group translocation. Therefore, to test the hypothesis that skewed roost sex ratios in this species arise from sex differences in scent marks, we translocated single‐sex groups of ca. 30 individuals to each of 20 previously unoccupied spiny palms. Female release sites attracted new recruits of both sexes, while male release sites attracted almost exclusively males. We infer that Prionostemma sp. 2 females preferentially roost in sites scent‐marked by females and that this mechanism is sufficient to explain the skewed roost ratios. Further adding to knowledge of Prionostemma roosting behavior, we show that Prionostemma sp. 1 forms female‐biased communal roosts on spiny palms, that some roosts contain both species, and that the species composition is stable on a time scale of at least 2 weeks. To the best of our knowledge, this study is the first experimental test of mechanisms underlying sexual segregation at communal roosts in any taxon.  相似文献   

20.
Ho YY  Lee LL 《Zoological science》2003,20(8):1017-1024
Patterns of roost use by Formosan leaf-nosed bats (Hipposideros armiger terasensis) were studied from November 1998 to April 2000. Structural characteristics, microclimates, and disturbance levels of 17 roosts used by H. a. terasensis and 15 roosts either used by other bat species (2) or not occupied by any bat species were compared. Roosts used by these bats were significantly larger in size and had greater areas covered by water compared to unused roosts. Entrances of active roosts were more likely to be east-west oriented. Hibernacula had lower entrances and ceilings than did roosts used only in summer. Higher temperatures were recorded in non-breeding roosts than in breeding roosts, but temperature gradients in these two types of roosts did not differ. In winter, hibernacula were warmer, and the temperature fluctuated less than in non-hibernacula. The relative humidities in summer roosts and hibernacula were nearly 100%. Disturbance levels were significantly higher in non-breeding roosts than in breeding roosts, and in non-hibernacula than in hibernacula. These results suggest that the Formosan leaf-nosed bats are selective of their roosts, but the pattern of their roost selection differs from those reported for bats of temperate regions. The reasons for such differences may be related to differences in body size, behavior, and reproductive strategy of the Formosan leaf-nosed bats living in a subtropical climate in Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号