共查询到20条相似文献,搜索用时 0 毫秒
1.
Fu Gao R.E.J. Mitchel Luqian Zhao Yanyong Yang Jixiao Lei Jianming Cai 《Journal of cellular biochemistry》2013,114(3):606-615
Due to the intrinsic resistance of many tumors to radiotherapy, current methods to improve the survival of cancer patients largely depend on increasing tumor radiosensitivity. It is well‐known that miR‐200c inhibits epithelial–mesenchymal transition (EMT), and enhances cancer cell chemosensitivity. We sought to clarify the effects of miR‐200c on the radiosensitization of human breast cancer cells. In this study, we found that low levels of miR‐200c expression correlated with radiotolerance in breast cancer cells. miR‐200c overexpression could increase radiosensitivity in breast cancer cells by inhibiting cell proliferation, and by increasing apoptosis and DNA double‐strand breaks. Additionally, we found that miR‐200c directly targeted TANK‐binding kinase 1 (TBK1). However, overexpression of TBK1 partially rescued miR‐200c mediated apoptosis induced by ionizing radiation. In summary, miR‐200c can be a potential target for enhancing the effect of radiation treatment on breast cancer cells. J. Cell. Biochem. 114: 606–615, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
2.
3.
Afshin Derakhshani Zohreh Rezaei Hossein Safarpour Morteza Sabri Atefeh Mir Mohammad Amin Sanati Fatemeh Vahidian Ali Gholamiyan Moghadam Ali Aghadoukht Khalil Hajiasgharzadeh Behzad Baradaran 《Journal of cellular physiology》2020,235(4):3142-3156
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) comprises around 20–30% of all BC subtypes and is correlated with poor prognosis. For many years, trastuzumab, a monoclonal antibody, has been used to inhibit the HER2 activity. Though, the main resistance to trastuzumab has challenged the use of this drug in the management of HER2-positive BC. Therefore, the determination of resistance mechanisms and the incorporation of new agents may lead to the development of a better blockade of the HER family receptor signaling. During the last few years, some therapeutic drugs have been developed for treating patients with trastuzumab-resistant HER2-positive BC that have more effective influences in the management of this condition. In this regard, the present study aimed at reviewing the mechanisms of trastuzumab resistance and the innovative therapies that have been investigated in trastuzumab-resistant HER2-positive BC subjects. 相似文献
4.
Elevated CRB3 expression suppresses breast cancer stemness by inhibiting β‐catenin signalling to restore tamoxifen sensitivity 下载免费PDF全文
Pingping Li Chen Feng He Chen Yina Jiang Fang Cao Jie Liu Peijun Liu 《Journal of cellular and molecular medicine》2018,22(7):3423-3433
Tamoxifen is a first‐line drug for hormone therapy (HT) in oestrogen receptor‐positive breast cancer patients. However, 20% to 30% of those patients are resistant to tamoxifen treatment. Cancer stem cells (CSCs) have been implicated as one of the mechanisms responsible for tamoxifen resistance. Our previous study indicated that decreased expression of the CRB3 gene confers stem cell characteristics to breast cancer cells. In the current investigation, we found that most of the breast cancer patient tissues resistant to tamoxifen were negative for CRB3 protein and positive for β‐catenin protein, in contrast to their matched primary tumours by immunohistochemical analysis. Furthermore, expression of CRB3 mRNA and protein was low, while expression of β‐catenin mRNA and protein was high in tamoxifen resistance cells (LCC2 and T47D TamR) contrast to their corresponding cell lines MCF7 and T47D. Similarly, CRB3 overexpression markedly restored the tamoxifen sensitivity of TamR cells by the MTT viability assay. Finally, we found that CRB3 suppressed the stemness of TamR cells by inhibiting β‐catenin signalling, which may in turn lead to a decrease in the breast cancer cell population. Furthermore, these findings indicate that CRB3 is an important regulator for breast cancer stemness, which is associated with tamoxifen resistance. 相似文献
5.
Pei Liu Shuofan Chen Yangyue Huang Shuai Xu Hongcheng Song Weiping Zhang Ning Sun 《Cell biology international》2020,44(6):1382-1393
Wilms' tumor, also known as nephroblastoma, is a kind of pediatric renal cancer. Previous studies have indicated that microRNAs (miRNAs) regulate various cancers progression. However, whether miR‐200 family regulated Wilms' tumor progression remains to be elucidated. In our study, miR‐200b/c/429 expression was downregulated in Wilms' tumor tissue samples from 25 patients. And data from three independent analyses of quantitative real‐time polymerase chain reaction revealed that the expression of miR‐200b/c/429 was downregulated in Wilms' tumor cell lines. Functionally, Cell counting kit‐8 assay revealed that cell viability was reduced by overexpressing miR‐200b/c/429. Transwell assay manifested that cell migration and invasion was hindered by miR‐200b/c/429 overexpression. Sphere‐forming and western blot assays demonstrated that miR‐200b/c/429 overexpression suppressed the sphere formation ability. Mechanically, nuclear factor‐κB (NF‐κB) pathway was confirmed to be associated with Wilms' tumor progression; miR‐200b/c/429 overexpression inactivated NF‐κB pathway as miR‐200b/c/429 was identified to target IκB kinase β (IKK‐β), an NF‐κB pathway‐related gene. Moreover, miR‐200b/c/429 was sponged by LINC00667 in Wilms' tumor cells. LINC00667 competitively bound with miR‐200b/c/429 to regulate IKK‐β expression and then activated NF‐κB pathway in Wilms' tumor. Subsequently, rescue assays illustrated that silencing of IKK‐β could reverse the effect of miR‐200b/c/429 inhibition on the progression of sh‐LINC00667‐transfected Wilms' tumor cells. In summary, LINC00667 promoted Wilms' tumor progression by sponging miR‐200b/c/429 family to regulate IKK‐β. 相似文献
6.
TP73‐AS1 promotes breast cancer cell proliferation through miR‐200a‐mediated TFAM inhibition 下载免费PDF全文
Jia Yao Feng Xu Danhua Zhang Wenjun Yi Xianyu Chen Gannong Chen Enxiang Zhou 《Journal of cellular biochemistry》2018,119(1):680-690
P73 antisense RNA 1T (TP73‐AS1 or PDAM) is a long non‐coding RNA, which can regulate apoptosis through regulation of p53 signaling‐related anti‐apoptotic genes. An abnormal change of TP73‐AS1 expression was noticed in cancers. The effects of TP73‐AS1 in breast cancer (BC) growth and the underlying mechanism remain unclear so far. In the present study, the effect of TP73‐AS1 in BC cell lines and clinical tumor samples was detected so as to reveal its role and function. In the present study, TP73‐AS1 was specifically upregulated in BC tissues and BC cell lines and was correlated to a poorer prognosis in patients with BC. TP73‐AS1 knocking down suppressed human BC cell proliferation in vitro through regulation of TFAM. In our previous study, we demonstrated that miR‐200a inhibits BC cell proliferation through targeting TFAM; here we revealed that TP73‐AS1 could regulate miR‐200a through direct targeting. Moreover, TP73‐AS1 might compete with TFAM for miR‐200a binding thus to promote TFAM expression. Data from the present study revealed that TP73‐AS1 promoted BC cell proliferation through acting as a competing endogenous RNA (ceRNA) by sponging miR‐200a. In conclusion, we regarded TP73‐AS1 as an oncogenic lncRNA promoting BC cell proliferation and a potential target for human BC treatment. 相似文献
7.
8.
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells. 相似文献
9.
10.
11.
Liang Yang Zhongjie Yan Yuanyu Wang Wandong Ma Chen Li 《Cell biochemistry and function》2016,34(6):404-413
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer. Evidences have suggested that CD133 is a marker for a subset of glioblastoma cancer stem cells. However, whether miRNA plays a critical role in CD133+ GBM is poorly understood. Here, we identified that miR‐154 was upregulated in CD133+ GBM cell lines. Knockdown of miR‐154 remarkably suppressed proliferation and migration of CD133+ GBM cells. Further study found that PRPS1 was a direct target of miR‐154 in CD133+ GBM cells. Overexpression of PRPS1 exhibited similar effects as miR‐154 knockdown in CD133+ GBMs. Our study identified miR‐154 as a previously unrecognized positive regulator of proliferation and migration in CD133+ GBM cells and a potentially therapeutic target of GBMs. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
12.
13.
miR‐200c/Bmi1 axis and epithelial–mesenchymal transition contribute to acquired resistance to BRAF inhibitor treatment 下载免费PDF全文
Shujing Liu Michael T. Tetzlaff Tao Wang Ruifeng Yang Lin Xie Gao Zhang Clemens Krepler Min Xiao Marilda Beqiri Wei Xu Giorgos Karakousis Lynn Schuchter Ravi K. Amaravadi Weiting Xu Zhi Wei Meenhard Herlyn Yuan Yao Litao Zhang Yingjie Wang Lin Zhang Xiaowei Xu 《Pigment cell & melanoma research》2015,28(4):431-441
Resistance to BRAF inhibitors (BRAFi) is one of the major challenges for targeted therapies for BRAF‐mutant melanomas. However, little is known about the role of microRNAs in conferring BRAFi resistance. Herein, we demonstrate that miR‐200c expression is significantly reduced whereas miR‐200c target genes including Bmi1, Zeb2, Tubb3, ABCG5, and MDR1 are significantly increased in melanomas that acquired BRAFi resistance compared to pretreatment tumor biopsies. Similar changes were observed in BRAFi‐resistant melanoma cell lines. Overexpression of miR‐200c or knock‐down of Bmi1 in resistant melanoma cells restores their sensitivities to BRAFi, leading to deactivation of the PI3K/AKT and MAPK signaling cascades, and acquisition of epithelial–mesenchymal transition‐like phenotypes, including upregulation of E‐cadherin, downregulation of N‐cadherin, and ABCG5 and MDR1 expression. Conversely, knock‐down of miR‐200c or overexpression of Bmi1 in BRAFi‐sensitive melanoma cells activates the PI3K/AKT and MAPK pathways, upregulates N‐cadherin, ABCG5, and MDR1 expression, and downregulates E‐cadherin expression, leading to BRAFi resistance. Together, our data identify miR‐200c as a critical signaling node in BRAFi‐resistant melanomas impacting the MAPK and PI3K/AKT pathways, suggesting miR‐200c as a potential therapeutic target for overcoming acquired BRAFi resistance. 相似文献
14.
Resveratrol Inhibits Proliferation,Invasion, and Epithelial–Mesenchymal Transition by Increasing miR‐200c Expression in HCT‐116 Colorectal Cancer Cells 下载免费PDF全文
Fatemeh Karimi Dermani Massoud Saidijam Razieh Amini Ali Mahdavinezhad Korosh Heydari Rezvan Najafi 《Journal of cellular biochemistry》2017,118(6):1547-1555
15.
16.
miR‐655 suppresses epithelial‐to‐mesenchymal transition by targeting Prrx1 in triple‐negative breast cancer 下载免费PDF全文
Zhi‐Dong Lv Bin Kong Xiang‐Ping Liu Li‐Ying Jin Qian Dong Fu‐Nian Li Hai‐Bo Wang 《Journal of cellular and molecular medicine》2016,20(5):864-873
Triple‐negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial‐to‐mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR‐655 was down‐regulated in TNBC, and its expression levels were associated with molecular‐based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR‐655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR‐655 not only induced the up‐regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal‐like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR‐655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR‐655 significantly suppressed Prrx1, as demonstrated by Prrx1 3′‐untranslated region luciferase report assay. Our study demonstrated that miR‐655 inhibits the acquisition of the EMT phenotype in TNBC by down‐regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression. 相似文献
17.
18.
19.
Long non‐coding RNA FEZF1‐AS1 promotes breast cancer stemness and tumorigenesis via targeting miR‐30a/Nanog axis 下载免费PDF全文
Zhi Zhang Liwei Sun Yixuan Zhang Guanming Lu Yongqiang Li Zhongheng Wei 《Journal of cellular physiology》2018,233(11):8630-8638
Long non‐coding RNAs (lncRNAs) have been verified to modulate the tumorigenesis of breast cancer at multiple levels. In present study, we aim to investigate the role of lncRNA FEZF1‐AS1 on breast cancer‐stem like cells (BCSC) and the potential regulatory mechanism. In breast cancer tissue, lncRNA FEZF1‐AS1 was up‐regulated compared with controls and indicated poor prognosis of breast cancer patients. In vitro experiments, FEZF1‐AS1 was significantly over‐expressed in breast cancer cells, especially in sphere subpopulation compared with parental subpopulation. Loss‐of‐functional indicated that, in BCSC cells (MDA‐MB‐231 CSC, MCF‐7 CSC), FEZF1‐AS1 knockdown reduced the CD44+/CD24? rate, the mammosphere‐forming ability, stem factors (Nanog, Oct4, SOX2), and inhibited the proliferation, migration and invasion. In vivo, FEZF1‐AS1 knockdown inhibited the breast cancer cells growth. Bioinformatics analysis tools and series of validation experiments confirmed that FEZF1‐AS1 modulated BCSC and Nanog expression through sponging miR‐30a, suggesting the regulation of FEZF1‐AS1/miR‐30a/Nanog. In summary, our study validate the important role of FEZF1‐AS1/miR‐30a/Nanog in breast cancer stemness and tumorigenesis, providing a novel insight and treatment strategy for breast cancer. 相似文献