首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown that nanomolar concentrations of glucagon-(19-29), which can derive from native glucagon by proteolytic cleavage of the dibasic doublet Arg17-Arg18, inhibit the Ca2+ pump in liver plasma membrane vesicles independently of adenylyl cyclase activation (Mallat, A., Pavoine, C., Dufour, M., Lotersztajn, S., Bataille, D., and Pecker, F. (1987) Nature 325, 620-622). We report here that the regulation of the Ca2+ pump by glucagon-(19-29) is dependent on guanine nucleotides. In the presence of 10 microM guanosine 5'-3-O-(thio) triphosphate (GTP gamma S) or 75 microM GTP, glucagon-(19-29) caused a biphasic regulation of the Ca2+ pump. ATP-dependent Ca2+ transport was inhibited in the presence of 10 pM to 1 nM glucagon-(19-29), while higher concentrations of the peptide (1-100 nM) reversed the inhibition caused by lower ones. GTP gamma S alone, at high concentrations (100 microM), reproduced the inhibitory effect of glucagon-(19-29) and induced a 40% inhibition of the basal activity of the Ca2+ pump which was reversed by low concentrations of glucagon-(19-29) (10 pM to 1 nM). Treatment of rats with cholera toxin resulted in a 70% increase in the basal activity of the Ca2+ pump, a loss of sensitivity to GTP gamma S and to the biphasic regulation by glucagon-(19-29). Treatment with pertussis toxin did not affect the response of the Ca2+ pump to GTP gamma S and glucagon-(19-29). We conclude that glucagon-(19-29) can exert a biphasic effect on the Ca2+ pump which is mediated by G protein(s) sensitive to cholera toxin.  相似文献   

2.
Endogenous neutrophil formylpeptide receptors do not inhibit adenylylcyclase activation. The ability of a cloned and transfected human formylpeptide receptor to mediate the inhibition of adenylylcyclase was assessed in the human embryonic kidney 293 TSA cell line. Inclusion of 1 microM fMetLeuPhe resulted in a ca. 50% inhibition of isoproterenol-stimulated cAMP in transfected cells. Activation of adenylylcyclase by isoproterenol was inhibited ca. 30% by fMetLeuPhe in membranes prepared from transfected cells but not in membranes prepared from neutrophils. Prior treatment of transfected cells with pertussis toxin abrogated the inhibitory effect of fMetLeuPhe. These data indicate that factors in addition to the primary structure of the formylpeptide receptor govern its transductional activities.  相似文献   

3.
Inhibition of luteinizing hormone (LH) exocytosis by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) in permeabilized pituitary cells has indicated the involvement of one or more GTP-binding proteins in the exocytotic mechanism distal to second messenger generation. We now report that two inhibitory sites of action of GTP gamma S can be distinguished by their dependence on GTP gamma S concentration and their sensitivity to pertussis toxin. Ca(2+)-stimulated exocytosis was half-maximally inhibited by 6.8 microM GTP gamma S, a six-fold higher concentration than that required for inhibition of exocytosis stimulated by phorbol ester plus cAMP. In addition, GTP gamma S inhibition of Ca(2+)-stimulated exocytosis was insensitive to pertussis toxin, in contrast to the inhibition of exocytosis stimulated by phorbol ester plus cAMP, which was abolished by pretreatment with pertussis toxin. These results indicate that at least two stimulus-specific GTP-binding proteins are involved in regulating LH exocytosis distal to second messenger generation.  相似文献   

4.
Inhibition of basal adenylate cyclase by GTP or guanyl-5'-yl imidodiphosphate was abolished in membranes isolated from rat adipocytes previously incubated with pertussis toxin. Forskolin (0.1 microM) stimulated adenylate cyclase about 4-fold and inhibition of cyclase by GTP or guanyl-5'-yl imidodiphosphate was also abolished by pertussis toxin treatment of rat adipocytes. Forskolin (1 microM) increased adenylate cyclase activity at least ten-fold and the inhibitory effect of GppNHp was reduced but not abolished by pertussis toxin. In rabbit adipocytes, pertussis toxin reversed the inhibition of adenylate cyclase activity by GppNHp to the same extent as that by GTP in the presence of 1 microM forskolin. The present results indicate that pertussis toxin can reverse the inhibition of adipocyte adenylate cyclase by nonhydrolyzable GTP analogs as well as that by GTP.  相似文献   

5.
In this study, the influence of the inhibitory mu-opioid receptor on the potencies of 5'-guanosine alpha-thiotriphosphate (GTP gamma S) and GDP at the inhibitory GTP-binding protein (Gi) were investigated in an adenylyl cyclase system. It was hoped that a receptor-mediated change in the potency of either GTP gamma S or GDP in affecting adenylyl cyclase activity may elucidate how a receptor alters cyclase activity via its G-protein. In an adenylyl cyclase system employing 5'-adenylyl imidodiphosphate as substrate, GTP gamma S, a nonhydrolyzable analog of GTP, inhibited forskolin-stimulated adenylyl cyclase activity in the absence of morphine; morphine failed to significantly affect the apparent potency of GTP gamma S. GDP blocked the GTP gamma S-induced inhibition of adenylyl cyclase; morphine profoundly diminished the ability of GDP to block the inhibitory effect of GTP gamma S. The IC50 values of GTP gamma S were 0.02 +/- 0.01, 0.18 +/- 0.04, and 2.2 +/- 0.5 microM in the absence of other drugs, in the presence of a combination of 100 microM GDP and morphine, and in the presence of 100 microM GDP, respectively. GDP blocked the inhibitory effect of GTP gamma S (0.3 microM) in a concentration-dependent manner; the EC50 for GDP was 16 +/- 2.6 microM in the absence of morphine and 170 +/- 32 microM in the presence of morphine. Exposure of 7315c cells to pertussis toxin for 3 h resulted in a small decrease in the potency of GTP gamma S in inhibiting cyclase. However, the relative potency of GDP in blocking the GTP gamma S-mediated inhibition of cyclase was increased: the EC50 values of GDP were 11 +/- 4 and 0.81 +/- 0.2 microM in untreated and pertussis toxin-treated membranes, respectively. In untreated membranes, there was a brief lag in the GTP gamma S-induced inhibition of adenylyl cyclase; morphine diminished this lag. In membranes treated with pertussis toxin, there was an exaggerated lag in the onset of GTP gamma S inhibition of adenylyl cyclase activity; morphine could no longer affect this lag. Thus, uncoupling the mu-opioid receptor from Gi appeared to increase the affinity of Gi for GDP. These data suggest that the effect of an inhibitory receptor is to decrease the affinity of Gi for GDP by virtue of its interaction with the carboxy-terminal region of Gi alpha.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
GTP hydrolysis in Dictyostelium discoideum membranes is caused by a low (Km greater than 1 mM) and a high affinity (Km 6.5 microM) GTPase. cAMP enhances GTP hydrolysis apparently by increasing the affinity of the high affinity GTPase (stimulated Km 4.5 microM); the low affinity GTPase was not affected by cAMP. Stimulation of GTP hydrolysis by cAMP was maximal at early time points and declined thereafter. A half-maximal stimulation of GTPase occurred at 3 microM cAMP and the specificity of cAMP derivatives for stimulation of GTPase activity showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Treatment of D. discoideum cells with pertussis toxin decreased the cAMP-induced stimulation of GTPase from 42 +/- 6% in control cells to 17 +/- 9% in pertussis toxin-treated cells. These results suggest that the interaction of cAMP with its surface receptor leads to stimulation of high affinity GTPase in D. discoideum membranes. At least one of those enzymes may represent a guanine nucleotide-binding protein sensitive to pertussis toxin.  相似文献   

7.
Guanyl nucleotide binding-proteins, or G-proteins, are ubiquitous molecules that are involved in cellular signal transduction mechanisms. Because a role has been established for cAMP in meiosis and G-proteins participate in cAMP-generating systems by stimulating or inhibiting adenylate cyclase, the present study was conducted to examine the possible involvement of G-proteins in the resumption of meiotic maturation. Cumulus cell-free mouse oocytes (denuded oocytes) were maintained in meiotic arrest in a transient and dose-dependent manner when microinjected with the nonhydrolyzable GTP analog, GTP gamma S. This effect was specific for GTP gamma S, because GppNHp, GTP, and ATP gamma S were without effect. Three compounds, known to interact with G-proteins, were tested for their ability to modulate meiotic maturation: pertussis toxin, cholera toxin, and aluminum fluoride (AlF4-). Pertussis toxin had little effect on maturation in either cumulus cell-enclosed oocytes or denuded oocytes when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP) or hypoxanthine. Cholera toxin stimulated germinal vesicle breakdown (GVB) in cumulus cell-enclosed oocytes during long-term culture, but its action was inhibitory in denuded oocytes. AlF4- stimulated GVB in both cumulus cell-enclosed oocytes and denuded oocytes when meiotic arrest was maintained with hypoxanthine but was much less effective in dbcAMP-arrested oocytes. In addition, AlF4- abrogated the inhibitory action of cholera toxin in denuded oocytes and also that of follicle-stimulating hormone (FSH) in cumulus cell-enclosed oocytes. Cholera toxin or FSH alone each stimulated the synthesis of cAMP in oocyte-cumulus cell complexes, whereas pertussis toxin or AlF4- alone were without effect. Both cholera toxin and AlF4- augmented the stimulatory action of FSH on cAMP. These data suggest the involvement of guanyl nucleotides and G-proteins in the regulation of GVB, although different G-proteins and mediators may be involved at the oocyte and cumulus cell levels. Cholera toxin most likely acts by ADP ribosylation of the alpha subunit of Gs and increased generation of cAMP, whereas AlF4- appears to act by antagonizing a cAMP-dependent step.  相似文献   

8.
GTP-binding activity to Dictyostelium discoideum membranes was investigated using various guanine nucleotides. Rank order of binding activities was: GTP gamma S greater than GTP greater than 8-N3-GTP; the binding of GTP gamma S and GTP, but not of 8-N3-GTP, was stimulated by receptor agonists. [3H]GTP binding to D. discoideum membranes has been described previously by a single binding type (Kd = 2.6 microM, Bmax = 85 nM). More detailed studies with [35S]GTP gamma S showed heterogeneous binding composed of two forms of binding sites with respectively high (Kd = 0.2 microM) and low (Kd = 6.3 microM) affinity. cAMP derivatives enhanced GTP gamma S binding by increasing the affinity and the number of the high-affinity sites, while the low-affinity sites were not affected by cAMP. The specificity of cAMP derivatives for stimulation of GTP gamma S binding showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Pretreatment of D. discoideum cells with pertussis toxin did not affect basal GTP and GTP gamma S binding, but eliminated the cAMP stimulation of GTP and GTP gamma S binding. These results indicate that D. discoideum cells have a pertussis toxin-sensitive GTP-binding protein that interacts with the surface cAMP receptor, suggesting the functional interaction of surface receptor with a G-protein in D. discoideum.  相似文献   

9.
Several prostaglandins inhibit the cAMP response to glucagon and beta-adrenergic stimulation in hepatocytes. To probe the mechanism of this inhibition, we have examined in primary hepatocyte cultures how pretreatment with pertussis toxin (islet-activating protein) influences the ability of the cells to respond to hormones and prostaglandins. Pertussis toxin augmented the effects of glucagon, epinephrine and isoproterenol, and also markedly enhanced the cAMP response to prostaglandin E1 (PGE1). Furthermore, whereas PGE1, PGE2, PGI2 and PGF2 alpha attenuated the cAMP responses to glucagon in control cultures, this inhibition was abolished in cells pretreated with pertussis toxin. A more detailed comparison was made of the effects of PGE1 and PGF2 alpha. In cells not treated with pertussis toxin, both these prostaglandins at high concentrations reduced the cAMP response to glucagon and isoproterenol by approximately 50%, but dose-effect curves showed that PGE1 was about 100-fold more potent as an inhibitor than PGF2 alpha. Pertussis toxin abolished the inhibitory effects of PGE1 and PGF2 alpha with almost identical time and dose requirements. The results obtained with PGE1, PGE2, PGI2 and PGF2 alpha suggest that prostaglandins of different series attenuate hormone-activable adenylate cyclase in hepatocytes through a common mechanism, dependent on the inhibitory GTP-binding protein.  相似文献   

10.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

11.
Free cells isolated from adult rat heart by the collagenase method were maintained in culture up to 21 h with or without an islet-activating protein (IAP) that had been purified from the culture medium of Bordetella pertussis. Short-term stimulation of beta-adrenergic or glucagon receptors in these cultured cells caused more accumulation of cAMP in cells precultured with IAP (IAP-treated) than in nontreated cells, although there was no significant difference in the baseline (non-stimulated) content of cAMP between these cells. Stimulation of muscarinic cholinergic or adenosine R-site receptors caused a marked inhibition of cAMP accumulation in nontreated cells in either the presence or absence of a beta-agonist (or glucagon); no such inhibition was essentially observed in IAP-treated cells. These actions of IAP developed gradually and were dose-dependent with the half-maximal concentration of approximately 80 ng/ml in culture. It is concluded that IAP may exert its unique influence on the heart cell membrane causing profound modification of the coupling mechanism involved in the receptor-mediated activation or inhibition of adenylate cyclase. This action of IAP differs clearly from that of cholera toxin which activates adenylate cyclase rather independently of the receptor functions in heart cells.  相似文献   

12.
Milrinone, a phosphodiesterase 3 (PDE3) inhibitor, is known to enhance left ventricular (LV) contractility by an inhibition of the breakdown of cAMP through the mechanism inhibiting PDE3. However, it is unclear whether milrinone also exerts positive lusitropy, like dobutamine. Here, we assessed the effects of milrinone on in vivo LV relaxation, as well as the Ca(2+)-ATPase activity and the Ca(2+) uptake function of the cardiac sarcoplasmic reticulum (SR), compared with the effect of dobutamine on those functions. After dobutamine (3 microg x kg(-1) x min(-1)) was administered, the peak value of the first derivative of LV pressure (+dP/dt) increased by 46%, whereas the time constant (tau) of LV pressure decay decreased by 6.9%, respectively. After milrinone (10 microg/kg) was administered, the peak +dP/dt increased to a similar extent as dobutamine (46%), whereas tau decreased much more than dobutamine (19.9%; P < 0.05). In LV crude homogenate, the thapsigargin-sensitive, Ca(2+)-ATPase activity-cAMP relationships was significantly less increased by milrinone compared with dobutamine (P < 0.05), indicating the higher sensitivity of the SR Ca(2+)-ATPase activity on cAMP by milrinone than by dobutamine. In the SR vesicles purified from LV muscles, the addition of cAMP increased the SR Ca(2+) uptake in a dose-dependent fashion, and the PDE3 inhibitors (milrinone and cGMP) significantly augmented this response (P < 0.05). Hence, milrinone substantially improved LV relaxation in association with an acceleration of the SR Ca(2+)-ATPase activity and the SR Ca(2+) uptake. This acceleration might be due to an inhibition of the membrane-bound PDE3 in the SR, leading to a local elevation of cAMP.  相似文献   

13.
The role of phosphodiesterase (PDE) isoforms in regulation of transepithelial Cl secretion was investigated using cultured monolayers of T84 cells grown on membrane filters. Identification of the major PDE isoforms present in these cells was determined using ion exchange chromatography in combination with biochemical assays for cGMP and cAMP hydrolysis. The most abundant PDE isoform in these cells was PDE4 accounting for 70-80% of the total cAMP hydrolysis within the cytosolic and membrane fractions from these cells. The PDE3 isoform was also identified in both cytosolic and membrane fractions accounting for 20% of the total cAMP hydrolysis in the cytosolic fraction and 15-30% of the total cAMP hydrolysis observed in the membrane fraction. A large portion of the total cGMP hydrolysis detected in cytosolic and membrane fractions of T84 cells was mediated by PDE5 (50-75%). Treatment of confluent monolayers of T84 cells with various PDE inhibitors produced significant increases in short-circuit current (Isc). The PDE3-selective inhibitors terqinsin, milrinone and cilostamide produced increases in Isc with EC50 values of 0.6 nM, 8.0 nM and 0.5 microM respectively. These values were in close agreement with the IC50 values for cAMP hydrolysis. The effects of the PDE1-(8-MM-IBMX) and PDE4-(RP-73401) selective inhibitors on Isc were significantly less potent than PDE3 inhibitors with EC50 values of >7 microM and >50 microM respectively. However, the effects of 8-MM-IBMX and terqinsin on Cl secretion were additive, suggesting that inhibition of PDE1 also increases Cl secretion. The effect of PDE inhibitors on Isc were significantly blocked by apical treatment with glibenclamide (an inhibitor of the CFTR Cl channel) and by basolateral bumetanide, an inhibitor of Na-K-2Cl cotransport activity. These results indicate that inhibition of PDE activity in T84 cells stimulates transepithelial Cl secretion and that PDE1 and PDE3 are involved in regulating the rate of secretion.  相似文献   

14.
In Zajdela hepatoma cells (ZHC) the plasma membrane Ca2+ pump displayed no sensitivity to glucagon (19-29) (mini-glucagon), whereas in hepatocyte this metabolite of glucagon evoked a biphasic regulation of the Ca2+ pump system via a cholera toxin-sensitive G protein. Analysis of G protein subunits in ZHC membranes indicated the presence of cholera toxin-sensitive Gs alpha and G beta gamma proteins, whose functionality was manifested by GTP and NaF stimulation of adenylylcyclase activity, and pertussis toxin-catalyzed ADP-ribosylation of Gi alpha, respectively. However, immunoblotting experiments suggested a lower content in beta gamma subunits in ZHC as compared with hepatocyte plasma membranes. Complementation of ZHC or hepatocyte plasma membranes with purified beta gamma subunits from transducin (T beta gamma) caused inhibition of the basal activity of the Ca2+ pump at 10 and 300 ng/ml, respectively, and revealed (in ZHC) or increased (in hepatocytes) sensitivity of the system to mini-glucagon. After cholera toxin treatment of ZHC, T beta gamma no longer reconstituted the response of the Ca2+ pump to mini-glucagon, suggesting that the mechanism of beta gamma action is dependent on an association with the alpha subunit of a cholera toxin-sensitive G protein. It is concluded that G beta gamma subunits control both the basal activity of the plasma membrane Ca2+ pump and its inhibition by mini-glucagon.  相似文献   

15.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

16.
Galanin inhibits insulin secretion by direct interference with exocytosis   总被引:2,自引:0,他引:2  
S Ullrich  C B Wollheim 《FEBS letters》1989,247(2):401-404
Electrically permeabilized RINm5F cells were used to study whether galanin inhibits insulin secretion distally to the generation of soluble second messengers. Ca2+-induced insulin secretion was inhibited by the neuropeptide in a dose-dependent manner. Galanin appears to act via a G-protein as pertussis toxin treatment abolished the effect. GTP (100 microM), GDP (100 microM) and a low dose of GTP gamma S (10 microM) did not affect galanin-mediated inhibition of secretion. In contrast, at 100 microM, GTP gamma S attenuated and GDP beta S abolished the effect of the peptide. We conclude that galanin inhibits exocytosis directly by a mechanism involving a G-protein.  相似文献   

17.
Studies were performed to examine a potential role for a guanine nucleotide-binding protein in epidermal growth factor (EGF)-stimulated phospholipase A2 (PLA2) activity. EGF increased prostaglandin E2 (PGE2) production in intact or saponin-permeabilized rat inner medullary collecting tubule (RIMCT) cells. Incubation of permeabilized cells with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) enhanced and with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) inhibited the response to EGF. GDP beta S had no effect on ionomycin-stimulated PGE2 production. Exposure of intact cells to 25 mM NaF + 10 microM AlCl3 enhanced both basal and EGF-stimulated PGE2 production. Pertussis toxin ADP-ribosylated a 41-kDa protein in RIMCT cell membranes. Pretreatment of cells with pertussis toxin (100 ng/ml for 16 h) eliminated the response to EGF in intact cells and the response to EGF + GTP gamma S in permeabilized cells. Pertussis toxin had no effect on the response to ionomycin. The effect of pertussis toxin was not due to alterations in cAMP as cellular cAMP levels were unaffected by pertussis toxin both in the basal state and in the presence of EGF. PGE2 production in response to EGF was not transduced by a G protein coupled to phospholipase C (PLC) as neomycin, which inhibited PLC, did not decrease EGF-stimulated PGE2 production. Also, PGE2 production was not increased by inositol trisphosphate and did not require the presence of extracellular Ca2+. In contrast to EGF-stimulated PLC activity, stimulation of PLA2 by EGF was not susceptible to inhibition by phorbol 12-myristate 13-acetate. These results clearly demonstrate the existence of a PLA2-specific pertussis toxin-inhibitable guanine nucleotide-binding protein coupled to the EGF receptor in RIMCT cells.  相似文献   

18.
Evidence is shown that protein kinase C is the major kinase which can phosphorylate histone H-1 in a membrane fraction prepared from rabbit peritoneal neutrophils. Addition of phorbol-12-myristate-13-acetate (PMA) (0.1 microgram/ml) or guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) (10 microM) to the membrane fraction results in an increase of the phosphorylation of histone H-1. To achieve this effect, calcium (20 microM) is required for GTP gamma S but not for PMA. The effect of GTP gamma S, but not PMA is inhibited in membranes obtained from cells pretreated with pertussis toxin. The kinase activity is also enhanced by treatment of the membrane with 10 microM of GppNHp or GTP but not with GDP, GMP, cGMP, ATP, ADP, AMP and cAMP. This is the first direct evidence that a GTP binding protein is involved in the activation of membrane associated protein kinase C.  相似文献   

19.
Various phosphodiesterase (PDE) 3,4 and 5 inhibitors have been compared with glucagon for their effectiveness at increasing hepatocyte cAMP, glycogenolysis and gluconeogenesis. Preincubation of isolated hepatocytes with PDE 3 and 4 inhibitors (50 M) for 2 h induced significant increases in cellular cAMP level. The order of effectiveness was: glucagon (78%), V11294A (42%), rolipram (40%), milrinone (36%), CDP-840 (33%), R0 20-1724 (31%), papaverine (27%), isobutylmethylxanthine (28%), isoliquiritigenin (25%), theophylline (22%), and amrinone (22%). The PDE 5 inhibitors dipyridamol and sildenafil had only a slight effect on cAMP levels. Glucose formation was increased as a result of increased glycogenolysis in the following order of effectiveness: glucagon (89%), V11294A (63%), rolipram (61%), milrinone (50%), CDP-840 (46%), R0 20-1724 (45%), sildenafil (34%), dipyridamol (31%), papaverine (30%), isobutylmethylxanthine (29%), theophylline (20%), amrinone (20%), and isoliquiritigenin (20%). Rolipram and milrinone, selective PDE 4 and PDE 3 inhibitors respectively, stimulated the gluconeogenesis of alanine, lactate + pyruvate, or fructose in hepatocytes isolated from fasted rats. On the other hand, selective cGMP specific phospodiesterase inhibitors, sildenafil and dipyridamol inhibited alanine-induced gluconeogenesis. All PDE inhibitors increased hepatocyte susceptibility to cyanide toxicity (3–4 fold) which was prevented by fructose whereas PDE 5 inhibitors did not significantly increase hepatocyte susceptibility.  相似文献   

20.
In purified preparations of human erythrocyte GTP-binding proteins, we have identified a new substrate for pertussis toxin, which has an apparent molecular mass of 43 kDa by silver and Coomassie Blue staining. Pertussis toxin-catalyzed ADP-ribosylation of the 43-kDa protein is inhibited by Mg2+ ion and this inhibition is relieved by the co-addition of micromolar amounts of guanine nucleotides. GTP affects the ADP-ribosylation with a K value of 0.8 microM. Addition of a 10-fold molar excess of purified beta gamma subunits (Mr = 35,000 beta; and Mr = 7,000 gamma) of other GTP-binding proteins results in a significant decrease in the pertussis toxin-mediated ADP-ribosylation of the 43-kDa protein. Treatment of the GTP-binding proteins with guanosine 5'-O-(thiotriphosphate) and 50 mM MgCl2 resulted in shifting of the 43-kDa protein from 4 S to 2 S on sucrose density gradients. Immunoblotting analysis of the 43-kDa protein with the antiserum A-569, raised against a peptide whose sequence is found in the alpha subunits of all of the known GTP-binding, signal-transducing proteins (Mumby, S. M., Kahn, R. A., Manning, D. R., and Gilman, A. G. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 265-259) showed that the 43-kDa protein is specifically recognized by the common peptide antiserum. A pertussis toxin substrate of similar molecular weight was observed in human erythrocyte membranes, bovine brain membranes, membranes made from the pituitary cell line GH4C1, in partially purified GTP-binding protein preparations of rat liver, and in human neutrophil membranes. Treatment of neutrophils with pertussis toxin prior to preparation of the membranes resulted in abolishment of the radiolabeling of this protein. From these data, we conclude that we have found a new pertussis toxin substrate that is a likely GTP-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号