首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Convulxin (CVX), a potent platelet aggregating protein from the venom of the snake Crotalus durissus terrificus, is known to bind to the platelet collagen receptor, glycoprotein VI (GPVI). CVX binding to human platelets was investigated by flow cytometry, using fluorescein labeled convulxin (FITC-CVX). Scatchard analysis indicated high and low affinity binding sites with Kd values of 0.6 and 4 nM and Bmax values of 1200 and 2000 binding sites per platelet. FITC-CVX binding was inhibited by collagen related peptides (CRPs) comprising a repeated GPO sequence, namely GCO(GPO)(10)GCOGNH(2) and GKO(GPO)(10)GKOGNH(2), which also bind to receptor GPVI. These peptides (monomeric or cross-linked forms) gave a high affinity inhibition of 10-20% for concentrations between 10 ng/ml and 5 microg/ml, followed by a second phase of inhibition at concentrations greater than 5 microg/ml. It was shown also that the inhibition of FITC-CVX binding by CRPs was independent on the time of preincubation of platelets with CRPs, and the same percentage of inhibition was seen with various concentrations of convulxin. Confocal microscopy of the distribution of FITC-CVX binding sites on platelets showed an homogeneous distribution of FITC-CVX bound to GPVI, although some limited clustering may exist.  相似文献   

2.
A monoclonal antibody, P1H5, to the human fibroblast class II extracellular matrix receptor (ECMR II) specifically inhibits human fibroblast adhesion to collagen and immunoprecipitates a cell surface receptor containing an alpha and beta subunit of approximately 140 kilodaltons each (Wayner, E. A., and Carter, W. G. (1987) J. Cell Biol. 105, 1873-1884). We report here that P1H5 also specifically inhibits adhesion of unactivated human platelets to type I and III collagens, but not to fibronectin. Immunoprecipitation of the class II ECMR from Triton X-100 detergent lysates of platelets, after cell surface iodination, identified the platelet collagen receptor. Peptide mapping confirmed that the II alpha and II beta subunits immunoprecipitated from platelets are structurally homologous with those derived from fibroblasts. The platelet ECMR II alpha and -beta subunits comigrate with platelet membrane glycoproteins Ia and IIa, respectively, on two-dimensional nonreduced-reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. These results indicate that platelet and fibroblast adhesion to collagen are both mediated by a similar receptor and that the alpha and beta subunits of this receptor are identical to platelet membrane glycoproteins Ia and IIa, respectively. Although glycoprotein Ia has been previously implicated as a collagen binding protein, our results are the first direct evidence that platelet glycoprotein Ia is associated with glycoprotein IIa in a heterodimer complex and that this complex, by mediating platelet attachment, is an actual receptor for platelet adhesion to collagen.  相似文献   

3.
The mechanism of signal transduction underlying the activation of platelets by collagen has been actively investigated for over 30 years, but the receptors involved remain incompletely understood. Studies of human platelets, which are unresponsive to collagen, mouse knockout models, and platelet biochemical studies support the hypothesis that the recently cloned platelet surface protein GPVI functions as a signaling receptor for collagen. To directly test this hypothesis, we have expressed wild-type and mutant forms of GPVI in RBL-2H3 cells, which express the Fcepsilon receptor gamma-chain (Fc Rgamma), the putative signaling co-receptor for GPVI in platelets, but lack GPVI itself. Expression of GPVI in RBL-2H3 cells confers strong adhesive and signaling responses to convulxin (a snake venom protein that directly binds GPVI) and weak responsiveness to collagen-related peptide but no responsiveness to collagen. To elucidate the mechanism of GPVI intracellular signaling, mutations were introduced in the receptor's transmembrane domain and C-terminal tail. Unlike reported studies of other Fc Rgamma partners, these studies reveal that both the GPVI transmembrane arginine and intracellular C-tail are necessary for coupling to Fc Rgamma and for signal transduction. To our knowledge, these studies are the first to demonstrate a direct signaling role for GPVI and the first to directly test the role of GPVI as a collagen receptor. Our results suggest that GPVI may be necessary but not sufficient for collagen signaling and that a distinct ligand-binding collagen receptor such as the alpha(2)beta(1) integrin is likely to play a necessary role for collagen signaling as well as adhesion in platelets.  相似文献   

4.
Proteomics approaches have made important contributions to the characterisation of platelet regulatory mechanisms. A common problem encountered with this method, however, is the masking of low-abundance (e.g. signalling) proteins in complex mixtures by highly abundant proteins. In this study, subcellular fractionation of washed human platelets either inactivated or stimulated with the glycoprotein (GP) VI collagen receptor agonist, collagen-related peptide, reduced the complexity of the platelet proteome. The majority of proteins identified by tandem mass spectrometry are involved in signalling. The effect of GPVI stimulation on levels of specific proteins in subcellular compartments was compared and analysed using in silico quantification, and protein associations were predicted using STRING (the search tool for recurring instances of neighbouring genes/proteins). Interestingly, we observed that some proteins that were previously unidentified in platelets including teneurin-1 and Van Gogh-like protein 1, translocated to the membrane upon GPVI stimulation. Newly identified proteins may be involved in GPVI signalling nodes of importance for haemostasis and thrombosis.  相似文献   

5.
Glycoprotein VI (GPVI) is a platelet-specific glycoprotein that has been indicated to react with collagen and activate platelets. Its structure was recently identified by cDNA cloning (Clemetson, J. M., Polgar, J., Magnenat, E., Wells, T. N., and Clemetson, K. J. (1999) J. Biol. Chem. 274, 29019-29024). However, the mechanism of the interaction between collagen and GPVI has not been analyzed in detail because both collagen and GPVI are insoluble molecules. In this study, we expressed the extracellular domain of GPVI as soluble forms as follows: the monomeric form (GPVIex) and the dimeric form of GPVI fused with the human immunoglobulin Fc domain (GPVI-Fc(2)). Purified GPVIex strongly inhibited convulxin (Cvx)-induced platelet aggregation but only weakly inhibited that induced by collagen-related peptide. However, only GPVI-Fc(2), and not GPVIex, inhibited collagen-induced platelet aggregation. The dimeric form of GPVI exhibits high affinity for collagen, as concluded from measurements of GPVI binding to immobilized collagen by both the enzyme-linked immunosorbent assay and surface plasmon resonance methods. GPVI-Fc(2) bound to the surface of immobilized collagen with a dissociation constant (K(D)) of 5.76 x 10(-7) m, but the binding of GPVIex was too weak to allow estimation of this parameter. Cvx did not inhibit the binding of dimeric GPVI to collagen, indicating that the binding site of GPVI to collagen was different from that to Cvx. Taken together, our data indicate that the high affinity binding site for collagen is composed from two chains of GPVI. Furthermore, they suggest that the binding sites for Cvx are different from the collagen-binding sites and do not need to be formed by two GPVI molecules. Because dimeric GPVI is the only form that shows high affinity to fibrous collagen, our results indicate that GPVI would be present as a dimeric form on the platelet. Moreover, surface plasmon resonance indicated that there is no detectable interaction between soluble collagen and GPVI, supporting our previous observation that GPVI only reacts with fibrous collagen.  相似文献   

6.
Platelets are essential for wound healing and inflammatory processes, but can also play a deleterious role by causing heart attack and stroke. Normal platelet activation is dependent on tetraspanins, a superfamily of glycoproteins that function as 'organisers' of cell membranes by recruiting other receptors and signalling proteins into tetraspanin-enriched microdomains. However, our understanding of how tetraspanin microdomains regulate platelets is hindered by the fact that only four of the 33 mammalian tetraspanins have been identified in platelets. This is because of a lack of antibodies to most tetraspanins and difficulties in measuring mRNA, due to low levels in this anucleate cell. To identify potentially platelet-expressed tetraspanins, mRNA was measured in their nucleated progenitor cell, the megakaryocyte, using serial analysis of gene expression and DNA microarrays. Amongst 19 tetraspanins identified in megakaryocytes, Tspan9, a previously uncharacterized tetraspanin, was relatively specific to these cells. Through generating the first Tspan9 antibodies, Tspan9 expression was found to be tightly regulated in platelets. The relative levels of CD9, CD151, Tspan9 and CD63 were 100, 14, 6 and 2 respectively. Since CD9 was expressed at 49000 cell surface copies per platelet, this suggested a copy number of 2800 Tspan9 molecules. Finally, Tspan9 was shown to be a component of tetraspanin microdomains that included the collagen receptor GPVI (glycoprotein VI) and integrin alpha6beta1, but not the von Willebrand receptor GPIbalpha or the integrins alphaIIbbeta3 or alpha2beta1. These findings suggest a role for Tspan9 in regulating platelet function in concert with other platelet tetraspanins and their associated proteins.  相似文献   

7.
In the present study, we have addressed the role of the linker for activation of T cells (LAT) in the regulation of phospholipase Cgamma2 (PLCgamma2) by the platelet collagen receptor glycoprotein VI (GPVI). LAT is tyrosine phosphorylated in human platelets heavily in response to collagen, collagen-related peptide (CRP), and FcgammaRIIA cross-linking but only weakly in response to the G-protein-receptor-coupled agonist thrombin. LAT tyrosine phosphorylation is abolished in CRP-stimulated Syk-deficient mouse platelets, whereas it is not altered in SLP-76-deficient mice or Btk-deficient X-linked agammaglobulinemia (XLA) human platelets. Using mice engineered to lack the adapter LAT, we showed that tyrosine phosphorylation of Syk and Btk in response to CRP was maintained in LAT-deficient platelets whereas phosphorylation of SLP-76 was slightly impaired. In contrast, tyrosine phosphorylation of PLCgamma2 was substantially reduced in LAT-deficient platelets but was not completely inhibited. The reduction in phosphorylation of PLCgamma2 was associated with marked inhibition of formation of phosphatidic acid, a metabolite of 1,2-diacylglycerol, phosphorylation of pleckstrin, a substrate of protein kinase C, and expression of P-selectin in response to CRP, whereas these parameters were not altered in response to thrombin. Activation of the fibrinogen receptor integrin alpha(IIb)beta(3) in response to CRP was also reduced in LAT-deficient platelets but was not completely inhibited. These results demonstrate that LAT tyrosine phosphorylation occurs downstream of Syk and is independent of the adapter SLP-76, and they establish a major role for LAT in the phosphorylation and activation of PLCgamma2, leading to downstream responses such as alpha-granule secretion and activation of integrin alpha(IIb)beta(3). The results further demonstrate that the major pathway of tyrosine phosphorylation of SLP-76 is independent of LAT and that there is a minor, LAT-independent pathway of tyrosine phosphorylation of PLCgamma2. We propose a model in which LAT and SLP-76 are required for PLCgamma2 phosphorylation but are regulated through independent pathways downstream of Syk.  相似文献   

8.
To investigate human basophil responses to chemokines, we have developed a sensitive assay that uses flow cytometry to measure leukocyte shape change as a marker of cell responsiveness. PBMC were isolated from the blood of volunteers. Basophils were identified as a single population of cells that stained positive for IL-3Ralpha (CDw123) and negative for HLA-DR, and their increase in forward scatter (as a result of cell shape change) in response to chemokines was measured. Shape change responses of basophils to chemokines were highly reproducible, with a rank order of potency: monocyte chemoattractant protein (MCP) 4 (peak at <1 nM) >/= eotaxin-2 = eotaxin-3 >/= eotaxin > MCP-1 = MCP-3 > macrophage-inflammatory protein-1alpha > RANTES = MCP-2 = IL-8. The CCR4-selective ligand macrophage-derived chemokine did not elicit a response at concentrations up to 10 nM. Blocking mAbs to CCR2 and CCR3 demonstrated that responses to higher concentrations (>10 nM) of MCP-1 were mediated by CCR3 rather than CCR2, whereas MCP-4 exhibited a biphasic response consistent with sequential activation of CCR3 at lower concentrations and CCR2 at 10 nM MCP-4 and above. In contrast, responses to MCP-3 were blocked only in the presence of both mAbs, but not after pretreatment with either anti-CCR2 or anti-CCR3 mAb alone. These patterns of receptor usage were different from those seen for eosinophils and monocytes. We suggest that cooperation between CCRs might be a mechanism for preferential recruitment of basophils, as occurs in tissue hypersensitivity responses in vivo.  相似文献   

9.
It has been suggested that the endothelin (ET) ETB receptor could mediate endothelium-dependent vasodilation to ET-1 or ET-3, but its in vivo role is still largely unknown. We used sarafotoxin S6C, a selective agonist of the ETB receptor, to study the in vivo effects of ETB stimulation. SRTX S6C induced a transient decrease in blood pressure, followed by a long-lasting pressor response accompanied by a marked renal and mesenteric vasoconstriction. No constriction was observed in isolated mesenteric arteries in vitro, indicating that the in vivo vasoconstrictor effect is most likely indirect. The pressor effect of SRTX S6C was not dependent on central stimulation of ETB receptors and was not mediated by catecholamines from the adrenal medulla, prostanoids or ET-1.  相似文献   

10.
Staphylococcus aureus strains isolated from patients with septic arthritis or osteomyelitis possess a collagen receptor present in two forms, which contains either two or three copies of a 187-amino-acid repeat motif. Collagen receptor-positive strains adhered to both collagen substrata and cartilage in a time-dependent process. Collagen receptor-specific antibodies blocked bacterial adherence, as did preincubation of the substrate with a recombinant form of the receptor protein. Furthermore, polystyrene beads coated with the collagen receptor bound collagen and attached to cartilage. Taken together, these results suggest that the collagen receptor is both necessary and sufficient to mediate bacterial adherence to cartilage in a process that constitutes an important part of the pathogenic mechanism in septic arthritis.  相似文献   

11.
Platelet adhesion to vascular endothelial cells is a pathophysiologically relevant cell-to-cell interaction. However, the mechanisms underlying this cellular interaction are incompletely understood. In search of the ligand for CD226 adhesion molecule expressed on platelets, we found that human umbilical vein endothelial cells (HUVEC) express significant amount of putative CD226 ligand. We demonstrated that thrombin-activated, but not resting, platelets bind to intact HUVEC. Anti-CD226 monoclonal antibody specifically inhibited the binding, indicating that CD226 mediates the intercellular binding between thrombin-activated platelets and HUVEC. We also demonstrated that platelet activation with thrombin induces tyrosine phosphorylation of CD226 as well as CD226-mediated platelet adhesion. Moreover, experiments using mutant transfectants suggested that the tyrosine at residue 322 of CD226 plays an important role for its adhesive function. CD226 was also expressed on primary megakaryocytes and megakaryocytic cell lines. Anti-CD226 monoclonal antibody inhibited binding of megakaryocytic cell lines to HUVEC. Taken together, these results reveal a novel mechanism for adhesion of platelets and megakaryocytic cells to vascular endothelial cells.  相似文献   

12.
We investigated the role of two MAP kinases, ERK2 and p38, in platelet adhesion and spreading over collagen matrix in static and blood flow conditions. P38 was involved in collagen-induced platelet adhesion and spreading in static adhesion conditions, whereas ERK2 was not. In blood flow conditions, with shear rates of 300 or 1500 s(-1), ERK2 and p38 displayed differential involvement in platelet adhesion, depending on the presence or absence of the von Willebrand factor (vWF). Low collagen coverage densities (0.04 microg/cm2) did not support vWF binding. During perfusions over this surface, platelet adhesion was not affected by the inhibition of ERK2 phosphorylation by PD 98059. However, abolishing p38 activation by SB 203580 treatment reduced platelet adhesion by 67 +/- 9% at 300 s(-1) and 56 +/- 2% at 1500 s(-1). In these conditions, the p38 activity required for platelet adhesion depends on the alpha2beta1 collagen receptor. At higher collagen coverage densities (0.8 microg/cm2) supporting vWF binding, the inhibition of ERK2 activity by PD 98059 decreased adhesion by 47 +/- 6% at 300 s(-1) and 72 +/- 3% at 1500 s(-1), whereas p38 inhibition had only a small effect. The ERK2 activity required for platelet adhesion was dependent on the interaction of vWF with GPIb. In conclusion, ERK2 and p38 have complementary effects in the control of platelet adhesion to collagen in a shear stress-dependent manner.  相似文献   

13.
Adhesion of cells to the terminal complement complex of C5b through C9 containing the serum S-protein (SC5b-9) was investigated using a microtiter plate attachment assay with L8 myoblast indicator cells. The skeletal muscle-derived L8 myoblasts bound and spread on substratum coated with SC5b-9, and with the vitronectin/S-protein component of SC5b-9. The myoblasts did not adhere to substratum coated with collagen, laminin, or fibronectin. The cell attachment was blocked by antibody to vitronectin/S-protein, whereas antibody to the other components C5, C6, C7, C8, or C9 had minimal effect. The cells were not bound to free vitronectin because attachment activity was removed by adsorption with an anti-C6 antibody column. The L8 cell attachment was dependent on divalent cations, was blocked by synthetic peptides containing the amino acid sequence Arg-Gly-Asp, and was inhibited by antivitronectin receptor antibody. These results indicate that cells adhere to the SC5b-9 complex through interaction of the vitronectin component with an integrin vitronectin receptor. Cell attachment to terminal C complexes could be used for leukocyte adherence and migration during inflammation, and also for attachment of tissue cells during regeneration after disease or traumatic injury.  相似文献   

14.
J Heino 《Matrix biology》2000,19(4):319-323
Distinct collagen subtypes are recognized by specific cell surface receptors. Two of the best known collagen receptors are members of the integrin family and are named alpha1beta1 and alpha2beta1. Integrin alpha1beta1 is abundant on smooth muscle cells, whereas the alpha2beta1 integrin is the major collagen receptor on epithelial cells and platelets. Many cell types, such as fibroblasts, osteoblasts, chondrocytes, endothelial cells, and lymphocytes may concomitantly express both of the receptors. We have studied the cell biology of these integrins at two levels. First, we have analyzed their ligand binding mechanism and specificity. Second, we have studied their signaling function inside three-dimensional collagen gels. This mini-review summarizes our most recent results. In conclusion, our data indicate that alpha1beta1 and alpha2beta1 integrins have differences in their ligand binding specificity. Furthermore, the two receptors are connected to distinct signaling pathways and their ligation may lead to opposite cellular responses.  相似文献   

15.
Epithelial-mesenchymal transition (EMT) is a developmental biological process that is hijacked during tumor progression. Cadherin switching, which disrupts adherens junctions and alters cadherin-associated signaling pathways, is common during EMT. In many tumors, substantial extracellular matrix (ECM) is deposited. Collagen is the most abundant ECM constituent and it mediates specific signaling pathways by binding to integrins and discoidin domain receptors (DDRs). The interaction of the collagen receptors results in activation of signaling pathways that promote tumor progression including an induction of the cadherin switching. DDR inhibitors have demonstrated anticancer therapeutic efficacy preclinically by inhibiting the collagen signaling. Understanding how collagen signaling impacts cellular processes including EMT and cadherin switching is of great interest especially given the strong interest in stromal targeted therapies for desmoplastic cancers.  相似文献   

16.
Recent studies have revealed that the sequence of amino acids asp-gly-glu-ala represents an essential determinant of the site within the alpha 1(I)-CB3 fragment of collagen recognized by the alpha 2 beta 1 integrin cell surface collagen receptor (Staatz et al., 1991). Studies employing chemical modifications of collagen amino acid side chains confirm both the essential nature of the acidic side chains of aspartic acid and glutamic acid residues and the nonessentiality of lysine epsilon-amino groups in supporting adhesion mediated by the alpha 2 beta 1 integrin. The approach also indicates the presence of a distinct determinant on collagen separate from the alpha 2 beta 1 recognition site that contains essential lysine side chains and that is necessary for subsequent interactions with the platelet surface that give rise to collagen-induced platelet activation and secretion. The two-step, two-site model for cellular signaling involving both an integrin and a signal-transducing coreceptor suggested by these data may be common to other integrin-mediated processes.  相似文献   

17.
To address the issues of redundancy and specificity of chemokines and their receptors in lymphocyte biology, we investigated the expression of CC chemokine receptors CCR1, CCR2, CCR3, CCR5, CXCR3, and CXCR4 and responses to their ligands on memory and naive, CD4 and CD8 human T cells, both freshly isolated and after short term activation in vitro. Activation through CD3 for 3 days had the most dramatic effects on the expression of CXCR3, which was up-regulated and functional on all T cell populations including naive CD4 cells. In contrast, the effects of short term activation on expression of other chemokine receptors was modest, and expression of CCR2, CCR3, and CCR5 on CD4 cells was restricted to memory subsets. In general, patterns of chemotaxis in the resting cells and calcium responses in the activated cells corresponded to the patterns of receptor expression among T cell subsets. In contrast, the pattern of calcium signaling among subsets of freshly isolated cells did not show a simple correlation with receptor expression, so the propensity to produce a global rise in the intracellular calcium concentration differed among the various receptors within a given T cell subset and for an individual receptor depending on the cell where it was expressed. Our data suggest that individual chemokine receptors and their ligands function on T cells at different stages of T cell activation/differentiation, with CXCR3 of particular importance on newly activated cells, and demonstrate T cell subset-specific and activation state-specific responses to chemokines that are achieved by regulating receptor signaling as well as receptor expression.  相似文献   

18.
The kinetics of adhesion of platelets to fibrinogen (Fg) immobilized on polystyrene latex beads (Fg-beads) was determined in suspensions undergoing Couette flow at well-defined homogeneous shear rates. The efficiency of platelet adhesion to Fg-beads was compared for ADP-activated versus "resting" platelets. The effects of the shear rate (100-2000 s(-1)), Fg density on the beads (24-2882 Fg/microm(2)), the concentration of ADP used to activate the platelets, and the presence of soluble fibrinogen were assessed. "Resting" platelets did not specifically adhere to Fg-beads at levels detectable with our methodology. The apparent efficiency of platelet adhesion to Fg-beads readily correlated with the proportion of platelets "quantally" activated by doses of ADP, i.e., only ADP-activated platelets appeared to adhere to Fg-beads, with a maximal adhesion efficiency of 6-10% at shear rates of 100-300 s(-1), decreasing with increasing shear rates up to 2000 s(-1). The adhesion efficiency was found to decrease by only threefold when decreasing the density of Fg at the surface of the beads by 100-fold, with only moderate decreases in the presence of physiologic concentrations of soluble Fg. These adhesive interactions were also compared using activated GPIIbIIIa-coated beads. Our studies provide novel model particles for studying platelet adhesion relevant to hemostasis and thrombosis, and show how the state of activation of the platelet and the local flow conditions regulate Fg-dependent adhesion.  相似文献   

19.
Evidence is presented that the IIb-IIIa glycoprotein complex, which functions as the receptor for fibrinogen on platelets and is central to platelet aggregation, is expressed on the surface of leukocytes where it may function as a receptor for fibronectin. F(ab')2 fragments of a monoclonal antibody, 25E11, raised against activated large granular lymphocytes, inhibited killing by natural killer cells, blocked the binding of fibronectin-coated particles by monocytes, and stimulated neutrophils to exhibit increased antibody-dependent killing. Immunoprecipitation studies of leukocytes and platelets, and the ability of 25E11 to inhibit platelet aggregation, identified the antigen as an epitope on the IIb-IIIa complex. This glycoprotein thus constitutes the first example of a receptor mediating both platelet aggregation and leukocyte adhesion.  相似文献   

20.
The effect of 3 prostaglandins (PG's) (I2, D2 and E1) on the adhesion of platelets to purified type III collagen has been investigated. A quantitative method for a specific evaluation of the adhesion has been applied and has revealed an inhibition of adhesion by low concentrations (10(-10)M) of PGs added before collagen; the effect varied as a function of the dose of PGs (maximum at 10(-6)M) which also induced an increase in the level of platelet cAMP. The inhibition of adhesion and the elevation of platelet cAMP followed the same time course and were either of short duration (rapid decrease in the induced effects after 15 and 45 seconds in the case of PGE1) or longer lasting (maximum effect maintained for 5 minutes in the case of PGI2 and D2). These effects were potentiated by a phosphodiesterase inhibitor such as theophylline (10(-3)M). The addition of PGs after collagen resulted in a reduction of the enhancement of cAMP, associated with a decrease in the inhibition of adhesion. Moreover, the addition of exogenous cAMP (dibutyryl N6-02' cAMP) induced a comparable inhibition. A correlation between the adhesion of platelets to collagen and the level of either endogenous or exogenous cAMP has been established. The PGs also inhibited the platelet release reaction from the alpha granules (beta TG) and the dense bodies. (5-HT and ADP). A greater inhibition of release than of adhesion was observed for the same doses of PGs added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号