首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small GTP-binding proteins associated with secretory vesicles of Paramecium   总被引:2,自引:0,他引:2  
GTP-binding proteins act as molecular switches in a variety of membrane-associated processes, including secretion. One group of GTP-binding proteins, 20-30 kDa, is related to the product of the ras proto-oncogene. In Saccharomyces cerevisiae, ras-like GTP-binding proteins regulate vesicular traffic in secretion. The ciliate protist Paramecium tetraurelia contains secretory vesicles (trichocysts) whose protein contents are released by regulated exocytosis. Using [alpha-32P]GTP and an on-blot assay for GTP-binding, we detected at least seven GTP-binding proteins of low molecular mass (22-31 kDa) in extracts of Paramecium tetraurelia. Subcellular fractions contained characteristic subsets of these seven; cilia were enriched for the smallest (22 kDa). The pattern of GTP-binding proteins was altered in two mutants defective in the formation or discharge of trichocysts. Trichocysts isolated with their surrounding membranes intact contained two minor GTP-binding proteins (23.5 and 29 kDa) and one major GTP-binding protein (23 kDa) that were absent from demembranated trichocysts. This differential localization of GTP-binding proteins suggests functional specialization of specific GTP-binding proteins in ciliary motility and exocytosis.  相似文献   

2.
GTP-binding proteins act as molecular switches in a variety of membrane-associated processes, including secretion. One group of GTP-binding proteins, 20–30 kDa, is related to the product of the ras proto-oncogene. In Saccharomyces cerevisiae, ras -like GTP-binding proteins regulate vesicular traffic in secretion. The ciliate protist Paramecium tetraurelia contains secretory vesicles (trichocysts) whose protein contents are released by regulated exocytosis. Using [α-32P]GTP and an on-blot assay for GTP-binding, we detected at least seven GTP-binding proteins of low molecular mass (22–31 kDa) in extracts of Paramecium tetraurelia. Subcellular fractions contained characteristic subsets of these seven; cilia were enriched for the smallest (22 kDa). The pattern of GTP-binding proteins was altered in two mutants defective in the formation or discharge of trichocysts. Trichocysts isolated with their surrounding membranes intact contained two minor GTP-binding proteins (23.5 and 29 kDa) and one major GTP-binding protein (23 kDa) that were absent from demembranated trichocysts. This differential localization of GTP-binding proteins suggests functional specialization of specific GTP-binding proteins in ciliary motility and exocytosis.  相似文献   

3.
Recent evidence suggests that low molecular weight GTP-binding proteins may play important roles in a variety of membrane transport processes. In order to address the question of whether these proteins are involved in transport processes in the nerve axon, we have assessed their presence in rapid transport membranes from rabbit optic nerve. We report the characterization of a group of low molecular weight GTP-binding proteins which are constituents of rapid transport vesicles. Although these proteins are components of rapid transport vesicles, they are apparently not major rapidly transported species. They are localized in cytosolic as well as in membrane fractions of axons, and the membrane-associated form behaves as an integral membrane protein(s). These proteins are also found in association with a variety of vesicular and organellar components of neurons including coated vesicles, synaptic vesicles, synaptic plasma membranes, and mitochondria. We discuss the possible roles of these proteins in rapid axonal transport and exocytosis.  相似文献   

4.
Small GTP-binding proteins of the Ras superfamily function as molecular switches in fundamental events such as signal transduction, cytoskeleton dynamics and intracellular trafficking. Guanine-nucleotide-exchange factors (GEFs) positively regulate these GTP-binding proteins in response to a variety of signals. GEFs catalyze the dissociation of GDP from the inactive GTP-binding proteins. GTP can then bind and induce structural changes that allow interaction with effectors. Representative structures of four main classes of exchange factors have been described recently and, in two cases, structures of the GTP-binding protein-GEF complex have been solved. These structures, together with biochemical studies, have allowed a deeper understanding of the mechanisms of activation of Ras-like GTP-binding proteins and suggested how they might represent targets for therapeutic intervention.  相似文献   

5.
GTP-binding proteins have been identified on the membranes of highly purified dextran-filled lysosomes (dextranosomes) and Triton-filled lysosomes (tritosomes) obtained from rat liver. Autoradiography of blots of lysosomal membrane proteins incubated with [alpha-32P]GTP revealed the presence of several specific GTP-binding proteins with a relative molecular mass (M(r)) predominantly in the range of 26-30 kDa. These GTP-binding proteins migrated slower in polyacrylamide gels than purified c-Ha-ras protein expressed in E. coli, whose apparent M(r) was 23 kDa in the same blot. The relative contents of GTP-binding proteins in lysosomal membranes were comparable or greater than that of plasma membranes and of microsomes. Chemical extraction showed that lysosomal GTP-binding proteins were more tightly associated with the membranes than with microsomal GTP-binding proteins. The possible involvement of lysosomal GTP-binding proteins in cellular functions including vacuolar (lysosomal) acidification and organellar dynamics are discussed.  相似文献   

6.
Small GTP-binding Proteins and their Functions in Plants   总被引:2,自引:0,他引:2  
Small GTP-binding proteins exist in eukaryotes from yeast to animals to plants and constitute a superfamily whose members function as molecular switches that cycle between “active” and “inactive” states. They regulate a wide variety of cell functions such as signal transduction, cell proliferation, cytoskeletal organization, intracellular membrane trafficking, and gene expression. In yeast and animals, this superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Arf/Sar1, and Ran families. However, plants contain Rab, Rho, Arf, and Ran homologs, but no Ras. Small GTP-binding proteins have become an intensively studied group of regulators not only in yeast and animals but also in plants in recent years. In this article we briefly review the class and structure of small GTP-binding proteins. Their working modes and functions in animals and yeast are listed, and the functions of individual members of these families in plants are discussed, with the emphasis on the recently revealed plant-specific roles of these proteins, including their cross-talk with plant hormones and other signals, regulation of organogenesis (leaf, root, and embryo), polar growth, cell division, and involvement in various stress and defense responses.  相似文献   

7.
The structures of over 30 complexes of Ras superfamily small GTP-binding proteins bound to diverse protein partners have been reported. Comparison of these complexes using the sequences of the small GTP-binding proteins to align the contact sites shows that virtually all surface positions make contacts with at least one partner protein. Rather than highlighting a single consensus binding site, these comparisons illustrate the remarkable diversity of contacts of Ras superfamily members. Here, a new analysis technique, the interface array, is introduced to quantify patterns of surface contacts. The interface array shows that small GTP-binding proteins are recognized in at least nine distinct ways. Remarkably, binding partners with similar functions, including those with distinct folds, recognize small GTP-binding proteins in similar ways. These classes of shared surface contacts support the occurrence of both divergent and convergent evolutionary processes and suggest that specific effector functions require particular protein–protein contacts.  相似文献   

8.
Regulation of phosphoinositide breakdown by guanine nucleotides   总被引:22,自引:0,他引:22  
I Litosch  J N Fain 《Life sciences》1986,39(3):187-194
Phosphoinositide hydrolysis is coupled to receptor systems involved in the elevation of cytosolic Ca2+ and activation of protein kinase C. In cell-free systems, guanine nucleotides are required to transduce the effects of receptor activation to phosphoinositide breakdown. Non-hydrolyzable guanine nucleotides stimulate phosphoinositide breakdown in permeabilized cells as well as membranes prepared from salivary glands, GH3 cells, neutrophils, hepatocytes and cerebral cortical tissue. In blowfly salivary gland membranes, 5-hydroxytryptamine stimulates a guanine-nucleotide dependent breakdown of both endogenous and exogenous phosphoinositide substrate through activation of phospholipase C. These data suggest that a GTP-binding protein modulates phospholipase C activity. The identity of this GTP-binding protein has not been established but may resemble other regulatory GTP-binding proteins which have been identified as transducing proteins in a variety of receptor systems.  相似文献   

9.
Paramecium tetraurelia has the shortest known introns as its standard intron length. Sequenced introns vary between 20 and 33 nucleotides in length. The intron sequences were discovered in genomic sequences coding for a variety of different proteins, including phosphatases, kinases, and low-molecular weight GTP-binding proteins. All intron sequences begin with the conserved dinucleotide GT and end with the conserved dinucleotide AG. The sequences are more AT rich than the Paramecium coding sequences. The identified sequences were confirmed as introns by sequencing several cDNA fragments. We report here analysis of the characteristics of 50 separate introns, including size, base composition, and a consensus sequence.  相似文献   

10.
1. The gamma-subunit of the vertebrate photoreceptor GTP-binding protein (transducin) is S-farnesylated at the C-terminal cysteine residue, with a part of the residue being methyl-esterified at the alpha-carboxyl group. 2. Functionally, the modified cysteine residue is implicated in efficient coupling of the alpha- and beta gamma-subunits, and indispensible for expressing GTP-binding activity. 3. Similar modifications, isoprenylation and methyl-esterification of the C-terminal cysteine residue have been found in a variety of proteins involved in signal transduction and growth regulation processes. However, it seems likely that the physiological roles of the modifications are different for the various proteins.  相似文献   

11.
12.
Septins belong to a family of conserved GTP-binding proteins found in majority of eukaryotic species except for higher plants. Septins form nonpolar complexes that further polymerize into filaments and associate with cell membranes, thus comprising newly acknowledged cytoskeletal system. Septins participate in a variety of cell processes and contribute to various pathophysiological states, including tumorigenesis and neurodegeneration. Here, we review the structural and functional properties of septins and the regulation of their dynamics with special emphasis on the role of septin filaments as a cytoskeletal system and its interaction with actin and microtubule cytoskeletons. We also discuss how septins compartmentalize the cell by forming local protein-anchoring scaffolds and by providing barriers for the lateral diffusion of the membrane proteins.  相似文献   

13.
Ding X  Yu W  Liu M  Shen S  Chen F  Cao L  Wan B  Yu L 《Molecules and cells》2008,25(3):385-389
Septins are a family of filament-forming GTP-binding proteins involved in a variety of cellular process such as cytokinesis, exocytosis, and membrane dynamics. Here we report the biochemical and immunocytochemical characterization of a recently identified mammalian septin, SEPT12. SEPT12 binds GTP in vitro, and a mutation (Gly56 to Asn) in the GTP-binding motif abolished binding. Immunocytochemical analysis revealed that wild-type SEPT12 formed filamentous structures when transiently expressed in Hela cells whereas SEPT12G56A generated large aggregates. In addition, wild-type SEPT12 failed to form filaments when coexpressed with SEPT12G56A. We also observed that GTP-binding by SEPT12 is required for interaction with SEPT11 but not with itself.  相似文献   

14.
The leukocyte response to chemoattractants is transduced by the interaction of transmembrane receptors with GTP-binding regulatory proteins (G-proteins). RGS1 is a member of a protein family constituting a newly appreciated and large group of proteins that act as deactivators of G-protein signaling pathways by accelerating the GTPase activity of G-protein alpha subunits. We demonstrate here that RGS1 is expressed in human monocytes; by immunofluorescence and subcellular fractionation RGS1 was localized to the plasma membrane. By using a mixture of RGS1 and plasma membranes, we were able to demonstrate GAP activity of RGS1 on receptor-activated G-proteins; RGS1 did not affect ligand-stimulated GDP-GTP exchange. We found that RGS1 desensitizes a variety of chemotactic receptors including receptors for N-formyl-methionyl-leucyl-phenylalanine, leukotriene B4, and C5a. Interaction of RGS proteins and ligand-induced G-protein signaling can be demonstrated by determining GTPase activity using purified RGS proteins and plasma membranes.  相似文献   

15.
GTP-binding proteins regulate a wide variety of intracellular signalling pathways in eukaryotic cells. The Ras GTP-binding proteins have received a great deal of attention since they were found to be modified by amino acid substitutions in a large number of cancers. It is now clear that Ras plays an essential role in regulating normal cell growth and differentiation, although how this is achieved biochemically is not known. The cellular concentration of Ras bound to GTP appears to be the limiting factor for signalling, and, not surprisingly, it is tightly controlled by both positive and negative regulators. There is now convincing evidence that the loss of one of these negative regulators of Ras, neurofibromin, can contribute to the development of malignancy; thus, neurofibromin behaves as a tumour suppressor gene product.  相似文献   

16.
Abstract: Although several monomeric GTP-binding proteins have been found in myelin, the signaling pathways in which they operate are not known. To define these signaling pathways we searched for specific target proteins that interact with the myelin monomeric GTP-binding proteins. A blot overlay approach was used. Bovine white matter homogenate, myelin, and oligodendrocyte proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto nitrocellulose membranes. The presence of proteins that interact with the myelin GTP-binding proteins was explored by incubating those blots with an enriched fraction of 22- and 25-kDa myelin GTP-binding proteins labeled with radioactive guanine nucleotides. When the GTP-binding proteins were in the inactive state (GDP-bound) they interacted with 28-, 47-, and 58-kDa oligodendrocyte polypeptides. Only the 28-kDa protein was present in myelin. In the active state (GTP-bound), they interacted only with a 47-kDa protein in myelin but with 31-, 38-, 47-, 58-, 60-, 68-, and 71-kDa proteins in oligodendrocytes and total homogenate. Under these experimental conditions the 28-kDa protein did not interact with the GTP-binding proteins. The fact that the myelin GTP-binding proteins in the active state formed complexes with a different set of proteins than when in the inactive state is a strong indication that these proteins are effector proteins. With the exception of the 31- and 38-kDa proteins that were detected only in the cytoplasmic fraction, these polypeptides were detected in the cytosolic fraction and total membrane fraction. The 25-kDa GTP-binding protein was present in all the complexes. Immunoblot analysis indicated that the 28-kDa polypeptide is RhoGDI, an effector protein that is known to regulate the activation and movement of several GTP-binding proteins between different cellular compartments. Thus, this study opens the way to identify the macromolecules participating in the myelin signaling pathway involving monomeric GTP-binding proteins.  相似文献   

17.
Rab11, a low molecular weight GTP-binding protein, has been shown to play a key role in a variety of cellular processes, including endosomal recycling, phagocytosis, and transport of secretory proteins from the trans-Golgi network. In this study we have described a novel Rab11 effector, EF-hands-containing Rab11-interacting protein (Eferin). In addition, we have identified a 20-amino acid domain that is present at the C terminus of Eferin and other Rab11/25-interacting proteins, such as Rip11 and nRip11. Using biochemical techniques we have demonstrated that this domain is necessary and sufficient for Rab11 binding in vitro and that it is required for localization of Rab11 effector proteins in vivo. The data suggest that various Rab effectors compete with each other for binding to Rab11/25 possibly accounting for the diversity of Rab11 functions.  相似文献   

18.
In order for neutrophils to function effectively in host defense, they have evolved specific attributes including the ability to migrate to the site of inflammation and release an array of toxic products including proteolytic enzymes, reactive oxygen species, and cationic proteins. While these compounds are intended for killing invading pathogens, if released inappropriately, they may also contribute to tissue damage. Such inflammatory tissue injury may be important in the pathogenesis of a variety of clinical disorders including arthritis, ischemia-reperfusion tissue injury, the systemic inflammatory response syndrome (SIRS), and the acute respiratory distress syndrome (ARDS). Despite the importance of neutrophil function in host defense and dysfunction in disease states, much remains unknown about the intracellular signaling pathways regulating neutrophil activity. This review will focus on the signaling molecules regulating leukocyte ‘effector’ functions including receptors, GTP-binding proteins, phospholipases, polyphosphoinositide metabolism, and protein kinases and phosphatases.  相似文献   

19.
The Rho GTPase (Rho) is a member of the Rho family, which belongs to the Ras superfamily of GTP-binding proteins. Like other GTP-binding proteins, Rho exists in two conformational states, an inactive GDP-bound form and an active GTP-bound form. Active Rho interacts with specific effectors to regulate the actin cytoskeleton and to mediate a variety of biological functions in cells. Rho-associated kinase (Rho-kinase) is the most studied Rho-effector, and studies of its biochemical and cell biological functions have provided us with useful information for understanding the molecular mechanisms of the actions of Rho. This review aims to summarize the roles of Rho and Rho-kinase in the regulation of the cytoskeletons.  相似文献   

20.
rasH mutants deficient in GTP binding.   总被引:14,自引:7,他引:7       下载免费PDF全文
Single amino acid substitutions were introduced into a region of the rasH protein (residues 116, 117, and 119) homologous to a variety of diverse GTP-binding proteins. Each of the mutant p21 proteins displayed a significant reduction (10- to 5,000-fold) in GTP binding affinity. Activated rasH proteins deficient in GTP binding were unaltered in their ability to morphologically transform NIH 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号