首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local actin assembly is associated with sites of exocytosis in processes ranging from phagocytosis to compensatory endocytosis. Here, we examine whether the trigger for actin-coat assembly around exocytosing Xenopus egg cortical granules is 'compartment mixing'--the union of the contents of the plasma membrane with that of the secretory granule membrane. Consistent with this model, compartment mixing occurs on cortical granule-plasma membrane fusion and is required for actin assembly. Compartment mixing triggers actin assembly, at least in part, through diacylglycerol (DAG), which incorporates into the cortical granule membranes from the plasma membrane after cortical granule-plasma membrane fusion. DAG, in turn, directs long-term recruitment of protein kinase Cbeta (PKCbeta) to exocytosing cortical granules, where it is required for activation of Cdc42 localized on the cortical granules. The results demonstrate that mixing of two membrane compartments can direct local actin assembly and indicate that this process is harnessed during Xenopus egg cortical granule exocytosis to drive compensatory endocytosis.  相似文献   

2.
Regulated exocytosis is thought to occur either by "full fusion," where the secretory vesicle fuses with the plasma membrane (PM) via a fusion pore that then dilates until the secretory vesicle collapses into the PM; or by "kiss-and-run," where the fusion pore does not dilate and instead rapidly reseals such that the secretory vesicle is retrieved almost fully intact. Here, we describe growing evidence for a third form of exocytosis, dubbed "kiss-and-coat," which is characteristic of a broad variety of cell types that undergo regulated exocytosis. Kiss-and-coat exocytosis entails prolonged maintenance of a dilated fusion pore and assembly of actin filament (F-actin) coats around the exocytosing secretory vesicles followed by direct retrieval of some fraction of the emptied vesicle membrane. We propose that assembly of the actin coats results from the union of the secretory vesicle membrane and PM and that this compartment mixing represents a general mechanism for generating local signals via directed membrane fusion.  相似文献   

3.
In chromaffin cells, exocytosis of single granules and properties of the fusion pore--the first connection between vesicular lumen and extracellular space --can be studied by cell-attached patch amperometry, which couples patch-clamp capacitance measurements with simultaneous amperometric recordings of transmitter release. Here we have studied exocytosis of single chromaffin granules and endocytosis of single vesicles in cell-free inside-out membrane patches by patch capacitance measurements and patch amperometry. We excised patches from chromaffin cells by using methods developed for studying properties of single ion channels. With low calcium concentrations in the pipette and bath, the patches showed no spontaneous exocytosis, but exocytosis could be induced in some patches by applying calcium to the cytoplasmic side of the patch. Exocytosis was also stimulated by calcium entry through the patch membrane. Initial conductances of the fusion pore were undistinguishable in cell-attached and excised patch recordings, but the subsequent pore expansion was slower in excised patches. The properties of exocytotic fusion pores in chromaffin cells are very similar to those observed in mast cells and granulocytes. Excised patches provide a tool with which to study the mechanisms of fusion pore formation and endocytosis in vitro.  相似文献   

4.
A cell-free system for regulated exocytosis in PC12 cells   总被引:9,自引:0,他引:9  
We have developed a cell-free system for regulated exocytosis in the PC12 neuroendocrine cell line. Secretory vesicles were preloaded with acridine orange in intact cells, and the cells were sonicated to produce flat, carrier-supported plasma membrane patches with attached vesicles. Exocytosis resulted in the release of acridine orange which was visible as a disappearance of labeled vesicles and, under optimal conditions, produced light flashes by fluorescence dequenching. Exocytosis in vitro requires cytosol and Ca(2+) at concentrations in the micromolar range, and is sensitive to Tetanus toxin. Imaging of membrane patches at diffraction- limited resolution revealed that 42% of docked granules were released in a Ca(2+)-dependent manner during 1 min of stimulation. Electron microscopy of membrane patches confirmed the presence of dense-core vesicles. Imaging of membrane patches by atomic force microscopy revealed the presence of numerous particles attached to the membrane patches which decreased in number upon stimulation. Thus, exocytotic membrane fusion of single vesicles can be monitored with high temporal and spatial resolution, while providing access to the site of exocytosis for biochemical and molecular tools.  相似文献   

5.
Summary The presence of excess membrane has been observed in the secretory granules of mast cells activated via the physiological mechanism of IgE receptor-mediated exocytosis. This excess membrane is the result of ade novo assembly from phospholipid, cholesterol, and other membrane components stored in the quiescent granule. Following receptor stimulation, membrane bilayer structures of varying size and shape can be seen in the subperigranular membrane space where the perigranular membrane has lifted away from the granule matrix. Vesicles as small as 25 nm in outer diameter are frequently found beneath the perigranular membrane at the site of granule fusion. Membrane in the form of elongated vesicles, tubes, or sheets has also been observed. The wide variation in size and shape of the newly assembled membrane may reflect the spontaneity of the entropy-driven membrane generation process and the fluid characteristic of the biological membrane in general. Fusion of the newly assembled membrane with the perigranular membrane enables the activated granule to enlarge. This rapid expansion process of the perigranular membrane may be the principal mechanism by which an activated granule can achieve contact with the plasma membrane in order to generate pore formation. The fact that new membrane assembly also occurs in the IgE receptor-mediated granule exocytosis, supports our observation thatde novo membrane generation is an inherent step in the mechanism of mast cell granule exocytosis. Whether new membrane assembly is a common step in the mechanism of secretory granule exocytosis in general, must await careful reinvestigation of other secretory systems.  相似文献   

6.
Ren J  Guo W 《Developmental cell》2012,22(5):967-978
The exocyst is a multiprotein complex essential for exocytosis and plasma membrane remodeling. The assembly of the exocyst complex mediates the tethering of post-Golgi secretory vesicles to the plasma membrane prior to fusion. Elucidating the mechanisms regulating exocyst assembly is important for the understanding of exocytosis. Here we show that the exocyst component Exo70 is a direct substrate of the extracellular signal-regulated kinases 1/2 (ERK1/2). ERK1/2 phosphorylation enhances the binding of Exo70 to other exocyst components and promotes the assembly of the exocyst complex in response to epidermal growth factor (EGF) signaling. We further demonstrate that ERK1/2 regulates exocytosis, because blocking ERK1/2 signaling by a chemical inhibitor or the expression of an Exo70 mutant defective in ERK1/2 phosphorylation inhibited exocytosis. In tumor cells, blocking Exo70 phosphorylation inhibits matrix metalloproteinase secretion and invadopodia formation. ERK1/2 phosphorylation of Exo70 may thus coordinate exocytosis with other cellular events in response to growth factor signaling.  相似文献   

7.
The time course for cell surface loss of von Willebrand factor (VWF) and the propolypeptide of VWF (proregion) following exocytosis of individual Weibel-Palade bodies (WPBs) from single human endothelial cells was analyzed. Chimeras of enhanced green fluorescent protein (EGFP) and full-length pre-pro-VWF (VWF-EGFP) or the VWF propolypeptide (proregion-EGFP) were made and expressed in human umbilical vein endothelial cells. Expression of VWF-EGFP or proregion-EGFP resulted in fluorescent rod-shaped organelles that recruited the WPB membrane markers P-selectin and CD63. The WPB secretagogue histamine evoked exocytosis of these fluorescent WPBs and extracellular release of VWF-EGFP or proregion-EGFP. Secreted VWF-EGFP formed distinctive extracellular patches of fluorescence that were labeled with an extracellular antibody to VWF. The half-time for dispersal of VWF-EGFP from extracellular patches was 323.5 +/- 146.2 s (+/-S.D., n = 20 WPBs). In contrast, secreted proregion-EGFP did not form extracellular patches but dispersed rapidly from its site of release. The half-time for dispersal of proregion-EGFP following WPB exocytosis was 2.98 +/- 1.88 s (+/-S.D., n = 32 WPBs). The slow rate of loss of VWF-EGFP is consistent with the adhesive nature of this protein for the endothelial membrane. The much faster rate of loss of proregion-EGFP indicates that this protein does not interact strongly with extracellular VWF or the endothelial membrane and consequently may not play an adhesive role at the endothelial cell surface.  相似文献   

8.
The dynamic activity of tip-localized filamentous actin (F-actin) in pollen tubes is controlled by counteracting RIC4 and RIC3 pathways downstream of the ROP1 guanosine triphosphatase promoting actin assembly and disassembly, respectively. We show here that ROP1 activation is required for both the polar accumulation and the exocytosis of vesicles at the plasma membrane apex. The apical accumulation of exocytic vesicles oscillated in phase with, but slightly behind, apical actin assembly and was enhanced by overexpression of RIC4. However, RIC4 overexpression inhibited exocytosis, and this inhibition could be suppressed by latrunculin B treatment or RIC3 overexpression. We conclude that RIC4-dependent actin assembly is required for polar vesicle accumulation, whereas RIC3-mediated actin disassembly is required for exocytosis. Thus ROP1-dependent F-actin dynamics control tip growth through spatiotemporal coordination of vesicle targeting and exocytosis.  相似文献   

9.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

10.
Previous studies on exocytosis in Paramecium using mutants affecting trichocyst extrusion permitted us to analyze the assembly and function of three intramembrane particle arrays ("ring" and "rosette" in the plasma membrane, "annulus" in the trichocyst membrane) involved in the interaction between these two membranes. Using a conditional mutation, nd9, which blocks rosette assembly and prevents exocytosis at the nonpermissive temperature, we have analyzed the effect of temperature on the secretory capacity of nd9 cells. By combining several techniques (physiological studies, microinjections, inhibition of fatty acid synthesis, and freeze-fracture analysis) we demonstrate (a) that the product of the mutated allele nd9 is not thermolabile but that its activity is dependent upon temperature-induced changes in the membrane lipid composition and (b) that the product of the nd9 locus is a diffusible cytoplasmic component whose interaction with both plasma membrane and trichocyst membrane is required for rosette assembly and exocytosis. The data provide physiological evidence for the existence of a molecular complex(es) linking the two membranes and involved in the control of membrane fusion; we discuss the possible nature and function of these links.  相似文献   

11.
Regulated exocytosis and SNARE function (Review)   总被引:1,自引:0,他引:1  
The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.  相似文献   

12.
The release of hormones and neurotransmitters requires the fusion of cargo-containing vesicles with the plasma membrane. This process of exocytosis relies on three SNARE proteins, namely syntaxin and SNAP-25 on the target plasma membrane and synaptobrevin on the vesicular membrane. In this study we examined the molecular assembly pathway that leads to formation of the fusogenic SNARE complex. We now show that the plasma membrane syntaxin and SNAP-25 interact with high affinity and equimolar stoichiometry to form a stable dimer on the pathway to the ternary SNARE complex. In bovine chromaffin cells, syntaxin and SNAP-25 colocalize in defined clusters that average 700 nm in diameter and cover 10% of the plasma membrane. Removal of the C terminus of SNAP-25 by botulinum neurotoxin E, a known neuroparalytic agent, dissociates the target SNARE dimer in vitro and disrupts the SNARE clustering in vivo. Together, our data uncover formation of stable syntaxin/SNAP-25 dimers as a central principle of the SNARE assembly pathway underlying regulated exocytosis.  相似文献   

13.
Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.  相似文献   

14.
The release of polypeptides in response to extracellular cues is a notable feature of endocrine, exocrine and neuronal cells, and is based on regulated exocytosis via dense-core secretory granules. There is interest in this mode of secretion because of its importance in human physiology and also because regulated exocytosis reflects a complex pathway of membrane traffic that includes compartment-specific reversible macromolecular assembly, coat-independent vesicle budding, maturation/remodeling of both lumenal and membrane constituents, and stimulus-dependent membrane fusion. Secretory granules are absent in most unicellular model organisms but are highly developed in the Ciliates, which therefore offer attractive systems to study these phenomena. In Tetrahymena thermophila , biochemical and genetic approaches have begun yielding insights into issues ranging from control of granule core assembly, based on reverse genetic analysis of granule cargo, to questions about factors involved in granule biogenesis, based on random mutational approaches.  相似文献   

15.
The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.  相似文献   

16.
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis.  相似文献   

17.
Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV) particles in non-polarized epithelial cells. This method is based on total internal reflection fluorescence (TIRF) microscopy to selectively image fluorescent virus particles near the plasma membrane, and takes advantage of a virus-encoded pH-sensitive probe to visualize the precise moment and location of particle exocytosis. We performed single-particle tracking and mean squared displacement analysis to characterize particle motion, and imaged a panel of cellular proteins to identify those spatially and dynamically associated with viral exocytosis. Based on our data, individual virus particles travel to the plasma membrane inside small, acidified secretory vesicles. Rab GTPases, Rab6a, Rab8a, and Rab11a, key regulators of the plasma membrane-directed secretory pathway, are present on the virus secretory vesicle. These vesicles undergo fast, directional transport directly to the site of exocytosis, which is most frequently near patches of LL5β, part of a complex that anchors microtubules to the plasma membrane. Vesicles are tightly docked at the site of exocytosis for several seconds, and membrane fusion occurs, displacing the virion a small distance across the plasma membrane. After exocytosis, particles remain tightly confined on the outer cell surface. Based on recent reports in the cell biological and alpha herpesvirus literature, combined with our spatial and dynamic data on viral egress, we propose an integrated model that links together the intracellular transport pathways and exocytosis mechanisms that mediate alpha herpesvirus egress.  相似文献   

18.
Depletion of Ca2+ stores in Xenopus oocytes activated entry of Ca2+ across the plasma membrane, which was measured as a current I(soc) in subsequently formed cell-attached patches. I(soc) survived excision into inside-out configuration. If cell-attached patches were formed before store depletion, I(soc) was activated outside but not inside the patches. I(soc) was potentiated by microinjection of Clostridium C3 transferase, which inhibits Rho GTPase, whereas I(soc) was inhibited by expression of wild-type or constitutively active Rho. Activation of I(soc) was also inhibited by botulinum neurotoxin A and dominant-negative mutants of SNAP-25 but was unaffected by brefeldin A. These results suggest that oocyte I(soc) is dependent not on aqueous diffusible messengers but on SNAP-25, probably via exocytosis of membrane channels or regulatory molecules.  相似文献   

19.
Synaptic exocytosis relies on assembly of three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins into a parallel four-helix bundle to drive membrane fusion. SNARE assembly occurs by stepwise zippering of the vesicle-associated SNARE (v-SNARE) onto a binary SNARE complex on the target plasma membrane (t-SNARE). Zippering begins with slow N-terminal association followed by rapid C-terminal zippering, which serves as a power stroke to drive membrane fusion. SNARE mutations have been associated with numerous diseases, especially neurological disorders. It remains unclear how these mutations affect SNARE zippering, partly due to difficulties to quantify the energetics and kinetics of SNARE assembly. Here, we used single-molecule optical tweezers to measure the assembly energy and kinetics of SNARE complexes containing single mutations I67T/N in neuronal SNARE synaptosomal-associated protein of 25 kDa (SNAP-25B), which disrupt neurotransmitter release and have been implicated in neurological disorders. We found that both mutations significantly reduced the energy of C-terminal zippering by ~ 10 kBT, but did not affect N-terminal assembly. In addition, we observed that both mutations lead to unfolding of the C-terminal region in the t-SNARE complex. Our findings suggest that both SNAP-25B mutations impair synaptic exocytosis by destabilizing SNARE assembly, rather than stabilizing SNARE assembly as previously proposed. Therefore, our measurements provide insights into the molecular mechanism of the disease caused by SNARE mutations.  相似文献   

20.
Trans SNARE complex assembly is an essential step in Ca2+-dependent membrane fusion, although the SNARE proteins do not bind Ca2+ ions. Studies to evaluate how the Ca2+sensor protein calmodulin might regulate this process led to the identification of a consensus calmodulin binding motif in the v-SNARE VAMP2. This sequence (residues 77-90) is situated precisely C-terminal to the tetanus toxin (TeNT) and botulinum B toxin cleavage site (76Q-F77) close to the transmembrane anchor. The same domain also binds acidic phospholipids and Ca2+/calmodulin or lipid binding are mutually exclusive. Directed mutagenesis of basic or hydrophobic residues within this motif reduced interactions with both Ca2+/calmodulin and phospholipids to a similar extent. The effects of these mutations on Ca2+-dependent exocytosis was explored using an hGH release assay in permeabilized pheochromocytoma PC12 cells. Treatment of cells with tetanus toxin (TeNT), which cleaves endogenous VAMP, abolished secretion. Secretion could be re-established by transfecting TeNT-resistant VAMP with mutations (Q76V,F77W) in the cleavage site. However rescue of exocytosis was abolished when additional mutations (K83A,K87V or W89A,W90A) were introduced that inhibited calmodulin and phospholipid binding to VAMP. Thus calmodulin and/or phospholipid binding to the membrane proximal region of VAMP is required for Ca2+-dependent exocytosis. We speculate that interactions between cis phospholipids at the vesicle surface and the membrane proximal region of VAMP inhibits SNARE complex assembly. Displacement of these interactions by Ca2+/calmodulin may promote SNARE complex assembly and lead to trans interactions between the membrane proximal region of VAMP and phospholipids in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号