首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report demonstrates that the genes in the murine Hox-2 cluster display spatially and temporally dynamic patterns of expression in the transverse plane of the developing CNS. All of the Hox-2 genes exhibit changing patterns of expression that reflect events during the ontogeny of the CNS. The observed expression correlates with the timing and location of the birth of major classes of neurons in the spinal cord. Therefore, it is suggested that the Hox-2 genes act to confer rostrocaudal positional information on each successive class of newly born neurons. This analysis has also revealed a striking dorsal restriction in the patterns of Hox-2 expression in the spinal cord between 12.5 and 14.5 days of gestation, which does not appear to correlate with any morphological structure. The cellular retinol binding protein (CRBP) shows a complementary ventral staining pattern, suggesting that a number of genes are dorsoventrally restricted during the development of the CNS. The expression of Hox-2 genes has also been compared with the Hox-3.1 gene, which exhibits a markedly different dorsoventral pattern of expression. This suggests that, while genes in the different murine Hox clusters may have similar A-P domains of expression, they are responding to different dorsoventral patterning signals in the developing spinal cord.  相似文献   

2.
3.
Central nervous system (CNS) development involves neural patterning, neuronal and axonal migrations, and synapse formation. DSCAM, a chromosome 21 axon guidance molecule, is expressed by CNS neurons during development and throughout adult life. We now report that DSCAM and its chromosome 11 paralog DSCAML1 exhibit inverse ventral-dorsal expression patterns in the developing spinal cord and distinct, partly inverse, expression patterns in the developing cortex, beginning in the Cajal-Retzius cells. In the adult cortex, DSCAM predominates in layer 3/5 pyramidal cells and DSCAML1 predominates in layer 2 granule cells. In the cerebellum, DSCAM is stronger in the Purkinje cells and DSCAML1 in the granule cells. Finally, we find that the predicted DSCAML1 protein contains 60 additional N-terminal amino acids which may contribute to its distinct expression pattern and putative function. We propose that the DSCAMs comprise novel elements of the pathways mediating dorsal-ventral patterning and cell-fate specification in the developing CNS.  相似文献   

4.
The mouse Hox 2.1 gene contains a homeobox sequence and is therefore a candidate for a vertebrate gene involved in the control of embryonic patterning or positional specification. To investigate this possibility, we have used in situ hybridization to determine the pattern of Hox 2.1 expression during mouse embryogenesis. At 8.5 days post coitum, Hox 2.1 is expressed at a low level in the posterior neuroectoderm and mesoderm, and in the neuroectoderm of the presumptive hindbrain. At 12.5 days p.c., Hox 2.1 is expressed in an anteroposterior restricted domain extending from the hindbrain throughout the length of the spinal cord, predominantly in the dorsal region. Between 12.5 and 13.5 days p.c. the domain becomes localized to the occipital and cervical regions. We also detect Hox 2.1 RNA in the embryonic lung, stomach, mesonephros and metanephros, as well as in myenteric plexus, dorsal root ganglia and the nodose ganglion, and in mature granulocytes. The embryonic expression of Hox 2.1 in neural tissue is compared with that of Hox 3.1, which also shows anteroposterior restricted domains of gene expression. These patterns of expression are not clearly consistent with Hox 2.1 or Hox 3.1 having roles in segmental patterning. However, the data are consistent with these genes having regulatory roles in anteroposterior positional specification in the neuroectoderm and mesoderm, and suggest that Hox 2.1 may also have functions during organogenesis.  相似文献   

5.
Clones corresponding to neuron-specific and developmentally regulated messenger RNA species in the chick have been isolated from a complementary DNA library prepared using polyadenylated RNA from 7-day embryonic spinal cord. The library was initially screened by differential complementary DNA hybridization procedures for clones identifying polyadenylated RNAs present in embryonic spinal cord but absent from or at low abundance in liver tissue. A high proportion of selected recombinant plasmids were found to identify different RNA species which, although present in 14-day embryonic spinal cord, could not be detected in a corresponding region of the developing chick CNS that is devoid of neuronal cell bodies, the optic nerve. The neuron-specific assignment of these mRNAs within the developing neuroectoderm was confirmed using bulk-isolated neuronal and glial-enriched cell fractions from 7-day embryonic spinal cord. In addition, several distinctive patterns of developmentally regulated expression of neuron-specific messenger RNA species have been observed in the chick spinal cord. The studies lay a foundation for detailed examination of the regional and temporal distribution and control of neuronal gene expression in the chick spinal cord during embryogenesis.  相似文献   

6.
Spinal cord injury (SCI) results in devastating motor and sensory deficits secondary to disrupted neuronal circuits and poor regenerative potential. Efforts to promote regeneration through cell extrinsic and intrinsic manipulations have met with limited success. Stem cells represent an as yet unrealized therapy in SCI. Recently, we identified novel culture methods to induce and maintain primitive neural stem cells (pNSCs) from human embryonic stem cells. We tested whether transplanted human pNSCs can integrate into the CNS of the developing chick neural tube and injured adult rat spinal cord. Following injection of pNSCs into the developing chick CNS, pNSCs integrated into the dorsal aspects of the neural tube, forming cell clusters that spontaneously differentiated into neurons. Furthermore, following transplantation of pNSCs into the lesioned rat spinal cord, grafted pNSCs survived, differentiated into neurons, and extended long distance axons through the scar tissue at the graft-host interface and into the host spinal cord to form terminal-like structures near host spinal neurons. Together, these findings suggest that pNSCs derived from human embryonic stem cells differentiate into neuronal cell types with the potential to extend axons that associate with circuits of the CNS and, more importantly, provide new insights into CNS integration and axonal regeneration, offering hope for repair in SCI.  相似文献   

7.
We isolated a chick homologue of BM88 (cBM88), a cell-intrinsic nervous system-specific protein and examined the expression of BM88 mRNA and protein in the developing brain, spinal cord and peripheral nervous system of the chick embryo by in situ hybridization and immunohistochemistry. cBM88 is widely expressed in the developing central nervous system, both in the ventricular and mantle zones where precursor and differentiated cells lie, respectively. In the spinal cord, particularly strong cBM88 expression is detected ventrally in the motor neuron area. cBM88 is also expressed in the dorsal root ganglia and sympathetic ganglia. In the early neural tube, cBM88 is first detected at HH stage 15 and its expression increases with embryonic age. At early stages, cBM88 expression is weaker in the ventricular zone (VZ) and higher in the mantle zone. At later stages, when gliogenesis persists instead of neurogenesis, BM88 expression is abolished in the VZ and cBM88 is restricted in the neuron-containing mantle zone of the neural tube. Association of cBM88 expression with cells of the neuronal lineage in the chick spinal cord was demonstrated using a combination of markers characteristic of neuronal or glial precursors, as well as markers of differentiated neuronal, oligodendroglial and astroglial cells. In addition to the spinal cord, cBM88 is expressed in the HH stage 45 (embryonic day 19) brain, including the telencephalon, diencephalon, mesencephalon, optic tectum and cerebellum. BM88 is also widely expressed in the mouse embryonic CNS and PNS, in both nestin-positive neuroepithelial cells and post-mitotic betaIII-tubulin positive neurons.  相似文献   

8.
Frizzled transmembrane proteins (Fzd) are receptors of Wnts, and they play key roles during central nervous system (CNS) development in vertebrates. Here we report the expression pattern of Frizzled10 in mouse CNS from embryonic stages to adulthood. Frizzled10 is expressed strongly at embryonic days E8.5 and E9.5 in the neural tube and tail bud. At E10.5, Frizzled10 is expressed in the forebrain vesicle, the fourth ventricle and the dorsal spinal cord. From E12.5 to E16.5, Frizzled10 expression is mainly observed in the cortical hem/fimbria, the neuroepithelium of the third ventricular zone, midbrain, developing cerebellum, and dorsal spinal cord. At P0, with the exception of expression in the fimbria, Frizzled10 mRNA expression is limited to specific nuclei including the ventral posterior thalamic nucleus (VP) and the dorsal lateral geniculate nucleus (DLG) in the developing thalamus as well as in the proliferative ventricular zone of the developing cerebellum. From P20 to adult, Frizzled10 mRNA is detected only in the internal capsule (ic). Our data show that expression of Frizzled10 is very strong during embryonic development of the CNS and suggest that Frizzled10 may play an essential role in spatial and temporal regulation during neural development.  相似文献   

9.
10.
11.
12.
13.
Retinoic acid (RA) mediates both anterior/posterior patterning and neuronal specification in the vertebrate central nervous system (CNS). However, the molecular mechanisms downstream of RA are not well understood. To investigate these mechanisms, we used the invertebrate chordate amphioxus, in which the CNS, although containing only about 20,000 neurons in adults, like the vertebrate CNS, has a forebrain, midbrain, hindbrain, and spinal cord and is regionalized by RA-signaling. Here we show, first, that domains of genes with expression normally limited to diencephalon and midbrain are generally not affected by altered RA-signaling, second, that contrary to previous reports, not only Hox1, 3, and 4, but also Hox2 and Hox6 are collinearly expressed in the amphioxus CNS, and third, that collinear expression of all these Hox genes is controlled by RA-signaling. Finally, we show that Hox1 is involved in mediating both the role of RA-signaling in regionalization of the hindbrain and in specification of hindbrain motor neurons. Thus, morpholino knock-down of the single amphioxus Hox1 mimics the effects of treatments with an RA-antagonist. This analysis establishes RA-dependent regulation of collinear Hox expression as a feature common to the chordate CNS and indicates that the RA-Hox hierarchy functions both in proper anterior/posterior patterning of the developing CNS and in specification of neuronal identity.  相似文献   

14.
15.
Oligodendrocytes and subependymal cells in the adult CNS have been shown to undergo radiation-induced apoptosis. Here, we examined the role of p53 in radiation-induced apoptosis in the adult mouse CNS. In the spinal cord of p53+/+ mice, apoptotic glial cells were observed within 24 h after irradiation, and the apoptotic response peaked at 8 h. These apoptotic cells demonstrated the immunohistochemical phenotype of oligodendrocytes, and decreased oligodendrocyte density was observed at 24 h after 22 Gy. A similar time course of radiation-induced apoptosis was seen in subependymal cells in the adult mouse brain. Radiation-induced apoptosis was preceded by an increase in nuclear p53 expression in glial cells of the spinal cord and subependymal cells of the brain. There was no evidence of radiation-induced apoptosis in the spinal cord and subependymal region of p53-/- animals. We conclude that the p53 pathway may be a mechanism through which DNA damage induces apoptosis in the adult CNS.  相似文献   

16.
The establishment of correct neurotransmitter characteristics is an essential step of neuronal fate specification in CNS development. However, very little is known about how a battery of genes involved in the determination of a specific type of chemical-driven neurotransmission is coordinately regulated during vertebrate development. Here, we investigated the gene regulatory networks that specify the cholinergic neuronal fates in the spinal cord and forebrain, specifically, spinal motor neurons (MNs) and forebrain cholinergic neurons (FCNs). Conditional inactivation of Isl1, a LIM homeodomain factor expressed in both differentiating MNs and FCNs, led to a drastic loss of cholinergic neurons in the developing spinal cord and forebrain. We found that Isl1 forms two related, but distinct types of complexes, the Isl1-Lhx3-hexamer in MNs and the Isl1-Lhx8-hexamer in FCNs. Interestingly, our genome-wide ChIP-seq analysis revealed that the Isl1-Lhx3-hexamer binds to a suite of cholinergic pathway genes encoding the core constituents of the cholinergic neurotransmission system, such as acetylcholine synthesizing enzymes and transporters. Consistently, the Isl1-Lhx3-hexamer directly coordinated upregulation of cholinergic pathways genes in embryonic spinal cord. Similarly, in the developing forebrain, the Isl1-Lhx8-hexamer was recruited to the cholinergic gene battery and promoted cholinergic gene expression. Furthermore, the expression of the Isl1-Lhx8-complex enabled the acquisition of cholinergic fate in embryonic stem cell-derived neurons. Together, our studies show a shared molecular mechanism that determines the cholinergic neuronal fate in the spinal cord and forebrain, and uncover an important gene regulatory mechanism that directs a specific neurotransmitter identity in vertebrate CNS development.  相似文献   

17.
Petrova ES  Otellin VA 《Ontogenez》2004,35(2):118-123
The method of ectopic transplantation of embryonic CNS rudiments makes it possible to study the mechanisms underlying adaptation of the transplanted embryonic rudiments. The production of nitric oxide by cells is considered as one of such mechanisms. NADPH-diaphorase is an index of the presence of nitric oxide synthase in cells. It was shown that the nerve cells of rat embryonic spinal cord transplants preserved their capacity to express NADPH-diaphorase after transplantation in the sciatic nerve of an adult animal for six months. The dynamics of NADPH-diaphorase-positive neurons of rat embryonic spinal cord developing after transplantation and in situ were studied. In spinal cord neck region, small bipolar NADPH-diaphorase-positive neurons were visualized on day 17 of prenatal development. After transplantation of the embryonic (day 15) spinal cord in the nerve, NADPH-diaphorase-positive neurons were formed later than in situ: within seven days. The results of histochemical studies carried out within six months after the operation suggest a protective role of NADPH-diaphorase in the neurons of allotransplants developing under the conditions of altered microenvironment and insufficient innervation and also suggest that nitric oxide can cause the death of neurons in long surviving transplants.  相似文献   

18.
19.
Using in situ hybridization on whole-mounts and sections of mouse embryos we have visualized the pattern of expression for the Eph receptor ligand ephrin-A5. Non neuronal expression domains include the ectoderm of the branchial arches, the ectoderm and mesenchyme surrounding the dorsal root ganglia, the intervertebral discs, maxillary and mandibulary mesenchymal elements as well as the nasal mesenchyme and ectoderm. Within the developing nervous system, ephrin-A5 expression is very dynamic. Besides the midbrain it is also expressed in the hypothalamus, and the neurohypophysis that we studied here in more detail. Hypothalamus expression of ephrin-A5 demarks distinct nuclei, persists throughout embryonic development, and can be seen also in the adult.  相似文献   

20.
Multiple classes of precursor cells have been isolated and characterized from the developing spinal cord including multipotent neuroepithelial (NEP) stem cells and lineage-restricted precursors for neurons (NRPs) and glia (GRPs). We have compared the survival, differentiation and integration of multipotent NEP cells with lineage-restricted NRPs and GRPs using cells isolated from transgenic rats that express the human placental alkaline phosphatase gene. Our results demonstrate that grafted NEP cells survive poorly, with no cells observed 3 days after transplant in the adult hippocampus, striatum and spinal cord, indicating that most CNS regions are not compatible with transplants of multipotent cells derived from fetal CNS. By contrast, at 3 weeks and 5 weeks post-engraftment, lineage-restricted precursors showed selective migration along white-matter tracts and robust survival in all three CNS regions. The grafted precursors expressed the mature neuronal markers NeuN and MAP2, the astrocytic marker GFAP, the oligodendrocytic markers RIP, NG2 and Sox-10, and the synaptic marker synaptophysin. Similar behavior was observed when these precursors were transplanted into the injured spinal cord. Predifferentiated, multipotent NEP cells also survive and integrate, which indicates that lineage-restricted CNS precursors are well suited for transplantation into the adult CNS and provide a promising cellular replacement candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号