首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification at commercial scale of viruses and virus vectors for gene therapy applications and viral vaccines is a major separations challenge. Tangential flow ultrafiltration has been developed for protein purification. Here tangential flow ultrafiltration of parvoviruses has been investigated. Because these virus particles are small (18-26 nm), removal of host cell proteins will be challenging. The results obtained here indicate that 30, 50, and 100 kDa membranes reject the virus particles, whereas 300 kDa membranes allow some virus particles to pass into the permeate. The decrease in permeate flux for the 300 kDa ultrafiltration membrane is much greater than for the 30, 50, and 100 kDa membranes, indicating possible entrapment of virus particle in the membrane pores. The permeate flux and level of protein rejection is strongly affected by the cell culture growth medium. The results indicate that when developing a new process, it is essential that the cell culture and purification operations be developed in parallel.  相似文献   

2.
The causal agent of Chloris striate mosaic disease appears to be a virus with polyhedral particles 18 nm in diameter usually occurring as paired structures about 18 times 30 nm in negatively stained preparations. These particles were detected in the nuclei of infected plants forming characteristic inclusions in all cells except those of the epidermis. Such particles were not detected in thin sections of viruliferous leaf hopper vectors (Nesoclutha pallida). Purified virus preparations were shown to be highly infective when assayed by feeding vector leaf hoppers through membranes and confining them on indicator plants. In particle morphology, chloris striate mosaic virus (CSMV) differs from other viruses of Gramineae in Australia but resembles maize streak virus isolated in Africa, which however is serologically unrelated.  相似文献   

3.
Large scale purification of viruses and viral vectors for gene therapy applications and viral vaccines is a major separation challenge. Here tangential flow microfiltration and ultrafiltration using flat sheet membranes has been investigated for concentration of human influenza A virus. Ultrafiltration membranes with molecular weight cutoffs of 100 and 300 kDa as well as 0.1, 0.2 and 0.45 microm microfiltration membranes have been tested. The results indicate that use of 300 kDa membranes not only concentrate the virus particles but also lead to a significant removal of host cell proteins and DNA in the permeate. Tangential flow filtration may be used to fractionate virus particles. Human influenza A virus particles are spherical with an average size of 100 nm. Use of a 0.1 microm membrane leads to passage of virus particles less than 100 nm into the permeate and an increase of larger particles in the retentate. These results suggest that control of the transmembrane pressure, membrane pore size and pore size distribution could enable isolation of intact virus particles from damaged virions. Isolation of the virus particles of interest from viral fragments and other particulate matter could result in simplification of subsequent purification steps. Larger pore size membranes such as 0.45 microm that allow the passage of all virus particles may be used to remove host cell fragments. In addition virus particles attached to these fragments will be removed. Careful selection of membrane morphology and operating conditions will be essential in order to maximize the benefit of tangential flow filtration steps in the purification of viral products from cell cultures.  相似文献   

4.
Semliki Forest Virus in HEp-2 Cell Cultures   总被引:4,自引:3,他引:1       下载免费PDF全文
The growth and development of Semliki Forest virus (SFV), an arbovirus of serological group A, in HEp-2 cells in tissue culture was examined by various techniques at frequent intervals. Infectivity and fluorescent-antibody studies demonstrated the presence of infective virus and viral antigens within the cells at 8 hr after infection. The antigen was particulate and distributed throughout the cytoplasm. Thereafter, there was rapid progression of virus production and cell destruction. By electron microscopy, tubular structures bounded by a fine membrane were observed in cytoplasm at 12 hr. Rows of small (25 mmu) virus particles were often present on the outer surface of these membranes, and at later times they became progressively more encrusted with the small virus particles. These structures subsequently increased rapidly in number, size, and complexity, and the space between the membrane and the tubules increased, thus forming vacuoles which contained tubules and were covered with the small particles. At later times (24 hr and later) larger (42 to 50 mmu) particles were observed, usually inside of the vacuoles. These larger particles (and occasionally the smaller ones) were also seen at the cell periphery and in the extracellular space. The large SFV particles appear to form by three distinct processes: (i) from the smaller particles, (ii) by development on an intravacuolar membrane, and (iii) at the ends of the tubules. The mode of development of SFV is unique among viruses studied to date, but in some characteristics it resembles that of other group A arboviruses. Its development differs from that of most arboviruses of group B and other serological groups.  相似文献   

5.
To investigate the function of the envelope glycoproteins gp50 and gII of pseudorabies virus in the entry of the virus into cells, we used linker insertion mutagenesis to construct mutant viruses that are unable to express these proteins. In contrast to gD mutants of herpes simplex virus, gp50 mutants, isolated from complementing cells, were able to form plaques on noncomplementing cells. However, progeny virus released from these cells was noninfectious, although the virus was able to adsorb to cells. Thus, the virus requires gp50 to penetrate cells but does not require it in order to spread by cell fusion. This finding indicates that fusion of the virus envelope with the cell membrane is not identical to fusion of the cell membranes of infected and uninfected cells. In contrast to the gp50 mutants, the gII mutant was unable to produce plaques on noncomplementing cells. Examination by electron microscopy of cells infected by the gII mutant revealed that enveloped virus particles accumulated between the inner and outer nuclear membranes. Few noninfectious virus particles were released from the cell, and infected cells did not fuse with uninfected cells. These observations indicate that gII is involved in several membrane fusion events, such as (i) fusion of the viral envelope with the cell membrane during penetration, (ii) fusion of enveloped virus particles with the outer nuclear membrane during the release of nucleocapsids into the cytoplasm, and (iii) fusion of the cell membranes of infected and uninfected cells.  相似文献   

6.
The supramolecular organization of the thylakoid membranes of the thallus stage in the red alga Porphyra leucosticta is studied in replicas of rapidly frozen and fractured cells. Freeze-fractured thylakoid membranes exhibit only two types of fracture faces (EF and PF), because the lamellae in red algal chloroplasts are not stacked. The PF reveals numerous, tightly packed, but randomly distributed particles (density range from 2970 to 3550 particles/μm2). In contrast, the EF particles appear organized into parallel rows, the spacing of which is about 60–70 nm (about 8–9 particles occur along 100 nm of the line that is formed). Significant numbers of single EF particles are randomly distributed between the EF particle rows. The particles on both fracture faces (PF and EF) fall into two size classes: 10 to 11 nm (major size class) and 14 to 15 nm (minor size class).  相似文献   

7.
The process of cell fusion of Madin-Darby canine kidney (MDCK) cells by HVJ (Sendai virus) was investigated to determine whether the HVJ particles were directly associated with the site of membrane fusion. Confluent monolayer cultures of MDCK cells are sealed together by tight junctions on the apices of their lateral membranes, so added virus particles can be adsorbed only to the apical surfaces of the cells. After incubation with HVJ at 37 degrees C for 30 min, the cells still appeared mononucleate and unfused by light microscopy, but electron microscopic examination showed that fusion at the lateral membranes had occurred below the tight junctions. Furthermore, when fluorescein isothiocyanate (FITC)-labeled macromolecules, which cannot pass across the gap junctions, were injected into the cells at this stage, labeled macromolecules were found to diffuse into the adjacent cells. These findings strongly suggest that cell fusion was initiated in the lateral membrane, a region distinct from the site of adsorbed HVJ particles. Thus, the virus particles were not directly associated with the fusion site, but induced fusion of the lateral membranes indirectly.  相似文献   

8.
To examine the potential role of the GAG precursor polyprotein in morphogenesis and assembly of the simian immunodeficiency virus (SIV), we have expressed the gag gene of SIVMac using a baculovirus expression vector. Infection of insect cells with recombinant virus containing the entire gag gene results in high expression of the GAG precursor protein, Pr57gag. The recombinant protein is myristylated and is released in the culture supernatant in an insoluble particulate form. A point mutation in the N-terminal glycine codon (Gly----Ala) inhibits myristylation. This mutated product is highly expressed but is not found in the culture supernatant. Electron microscopy and immunogold labelling of infected cells show that the native Pr57gag protein assembles into 100-120 nm virus-like particles that bud from the cell plasma membrane and are released in the culture supernatant. The unmyristylated protein also assembles into particulate structures which only accumulate inside the cells. These results demonstrate that the unprocessed GAG precursor of SIV can spontaneously assemble into particles in the absence of other viral proteins. Myristylation of the Pr57gag precursor is necessary for its association with the cell plasma membrane, for budding and for extracellular release.  相似文献   

9.
Cellular contacts between HIV-1-infected donor cells and uninfected primary CD4(+) T lymphocytes lead to virus transfer into endosomes. Recent evidence suggests that HIV particles may fuse with endosomal membranes to initiate a productive infection. To explore the role of endocytosis in the entry and replication of HIV, we evaluated the infectivity of transferred HIV particles in a cell-to-cell culture model of virus transmission. Endocytosed virus led to productive infection of cells, except when cells were cultured in the presence of the anti-gp120 mAb IgGb12, an agent that blocks virus attachment to CD4, suggesting that endocytosed virus was recycled to the outer cell surface. Confocal microscopy confirmed the colocalization of internalized virus antigen and the endosomal marker dynamin. Additionally, virus transfer, fusion, or productive infection was not blocked by dynasore, dynamin-dependent endosome-scission inhibitor, at subtoxic concentrations, suggesting that the early capture of virus into intracellular compartments did not depend on endosomal maturation. Our results suggest that endocytosis is not a mechanism of infection of primary CD4 T cells, but may serve as a reservoir capable of inducing trans-infection of cells after the release of HIV particles to the extracellular environment.  相似文献   

10.
J Golecki  G Drews  R Bühler 《Cytobiologie》1979,18(3):381-389
By freeze-fracture electron microscopy, particles have been observed on the protoplasmic leaflet (PF face) of cytoplasmic and intracytoplasmic membranes of the photosynthetic bacterium Rhodopseudomonas capsulata. The particles are present under all culture conditions of chemotrophically and phototrophically grown cells. However, the number of particles per microM2 increased significantly when the formation of the photosynthetic apparatus in the membrane is induced. Intracytoplasmic membranes, where the bulk of photosynthetic activity is localized, always have a higher density of particles than cytoplasmic membranes. Under all conditions particles with a diameter of 9.5 nm dominate. The frequency of particles with diameters greater or smaller than 9.5 nm changed with culture conditions. A comparison of biochemical and electron microscopic data have lead us to the conclusion that the particles, formed under conditions which allow the synthesis of the photosynthetic apparatus, are composed of photochemical reaction centers and antenna light-harvesting bacteriochlorophyll I (B 875)-protein complexes. The total molecular weight of these particles is calculated to be 500,000.  相似文献   

11.
Upon binding to the poliovirus receptor (PVR), the poliovirus 160S particles undergo a conformational transition to generate 135S particles, which are believed to be intermediates in the virus entry process. The 135S particles interact with host cell membranes through exposure of the N termini of VP1 and the myristylated VP4 protein, and successful cytoplasmic delivery of the genomic RNA requires the interaction of these domains with cellular membranes whose identity is unknown. Because detergent-insoluble microdomains (DIMs) in the plasma membrane have been shown to be important in the entry of other picornaviruses, it was of interest to determine if poliovirus similarly required DIMs during virus entry. We show here that methyl-beta-cyclodextrin (MbetaCD), which disrupts DIMs by depleting cells of cholesterol, inhibits virus infection and that this inhibition was partially reversed by partially restoring cholesterol levels in cells, suggesting that MbetaCD inhibition of virus infection was mediated by removal of cellular cholesterol. However, fractionation of cellular membranes into DIMs and detergent-soluble membrane fractions showed that both PVR and poliovirus capsid proteins localize not to DIMs but to detergent-soluble membrane fractions during entry into the cells, and their localization was unaffected by treatment with MbetaCD. We further demonstrate that treatment with MbetaCD inhibits RNA delivery after formation of the 135S particles. These data indicate that the cholesterol status of the cell is important during the process of genome delivery and that these entry pathways are distinct from those requiring DIM integrity.  相似文献   

12.
在病鱼肾组织中发现有病毒颗粒,在头肾组织中也看到类似的颗粒。病毒呈球形或六角形,直径为60—78毫微米,平均为69毫微米;颗粒中央有一电子密度较高的核心,其直径平均为32毫微米,核心周围包有外膜,宽20毫微米左右。此外,还有一种无外膜的、电子密度均匀的病毒颗粒,直径为46—60毫微米,平均为52毫微米,这种颗粒出现在细胞核和胞质包涵体内。所观察到的病毒颗粒均出现在肾的造血组织内,但红血球和颗粒白血球中没有发现。肾小管上皮细胞正常,也未观察到病毒颗粒。在正常鱼的肾组织中没有发现与病鱼标本中类似的病毒颗粒。因此可以认为,我们人工感染致病的草鱼肾组织中所观察到的病毒颗粒,是草鱼出血病的病原,暂名为草鱼疱疹病毒。    相似文献   

13.
Ehrlich ascites tumor cell membranes were completely modified after incubation at 37 °C for 30 min with a small dose of HVJ (about 0.7% of the maximum number of the virus particles that could be adsorbed onto the cells). After this treatment, the cells could adsorb further added HVJ onto their surfaces at 0 °C. But the cell agglutination which was induced by viral adsorption at 0 °C was very weak, and the interaction of the adsorbed virus with the lipid layer of the cell membrane at 37 °C preceding fusion or lysis of the cells was not strong. A discrepancy was observed between acquisition of the modification and liberation of sialic acid (destruction of viral receptors) by viral neuraminidase. The modification proceeded well on incubation at 37 °C but not at lower temperatures. The possibility that the modification is induced by fusion of viral envelopes with cell membranes is discussed.  相似文献   

14.
A favorable system which is amenable to frequent and reproducible sampling, consisting of suspension cultures of strain L cells and vaccinia virus, was employed to study the animal virus-mammalian host cell relationship. The three principal aspects investigated concerned the adsorption and penetration of vaccinia into the host, the relationship between the sequence of virus development and the production of infectious particles, and the changes in the fine structure of the host cells. Experiments in which a very high multiplicity of infection was used revealed that vaccinia is phagocytized by L cells in less than 1 hour after being added to the culture, without any apparent loss of its outer limiting membranes. Regions of dense fibrous material, thought to be foci of presumptive virus multiplication, appear in the cytoplasm 2 hours after infection. A correlation between electron microscope studies and formation of infectious particles shows that although immature forms of the virus appear 4 hours after infection, infectious particles are produced 6 hours after infection of the culture, at the time when mature forms of vaccinia appear for the first time in thinly sectioned cells. Spread of the infection is gradual until eventually, after 24 hours, virus is being elaborated throughout the cytoplasm. Addition of vaccinia to monolayer cultures induced fusion of L cells and rapid formation of multinucleate giant forms. In both suspension and stationary cultures infected cells elaborate a variety of membranous structures not present in normal L cells. These take the form of tube-like lamellar and vesicular formations, or appear as complex reticular networks or as multi-laminar membranes within degenerating mitochondria.  相似文献   

15.
Clearance of murine leukemia virus from CHO cell suspensions by flocculation and microfiltration was investigated. Murine leukemia virus is a retrovirus that is recommended by the U.S. Food and Drug Administration for validating clearance of retrovirus-like particles. Due to biosafety considerations, an amphotropic murine leukemia virus vector (A-MLV) that is incapable of self-replication was used. Further, A-MLV is incapable of infecting CHO cells, thus ensuring that infection of the CHO cells in the feed did not result in a reduced virus titer in the permeate. The virus vector contains the gene for the enhanced green fluorescent protein (EGFP) to facilitate assaying for infectious virus particles. The virus particles are 80-130 nm in size. The feed streams were flocculated using a cationic polyelectrolyte. Microfiltration was conducted using 0.1 and 0.65 microm pore size hollow fiber membranes. The level of virus clearance in the permeate was determined. For the 0.1 microm pore size membranes a 1,000-fold reduction in the virus titer in the permeate was observed for feed streams consisting of A-MLV, A-MLV plus flocculant, A-MLV plus CHO cells, and A-MLV plus flocculant and CHO cells. While the flocculant had little effect on the level of virus clearance in the permeate for 0.1 microm pore size membranes, it did lead to higher permeate fluxes for the CHO cell feed streams. Virus clearance experiments conducted with 0.65 microm pore size membranes indicate little clearance of A-MLV from the permeate in the absence of flocculant. However, in the presence of flocculant the level of virus clearance in the permeate was similar to that observed for 0.1 microm pore size membranes. The results obtained here indicate that significant clearance of A-MLV is possible during tangential flow microfiltration. Addition of a flocculant is essential if the membrane pore size is greater than the diameter of the virus particles. Flocculation of the feed stream leads to an increase in the permeate flux.  相似文献   

16.
A rhabdovirus was found to be associated with a lethal hemorrhagic disease in the cultured Chinese sucker Myxocyprinus asiaticus Bleeker. The rhabdovirus was amplified and isolated from the infected GCO (grass carp ovary) cells. In ultrathin sections of liver cells from the diseased fish, the virus particles exhibited the characteristic bacilliform morphology, and budded through vesicle membranes of the infected cells. The isolated rhabdovirus particles were found to have a bacilliform morphology with 2 rounded ends rather than a typical flat base. The virus particles were measured and ranged in size from 150 to 200 nm in length and 50 to 60 nm in diameter. Most other characteristics, including their size, extensive virus infectivity to fish cell lines, strong cytopathogenic effects, stability at high temperatures, vesicle formation in infected cells, structure protein electrophoretic patterns and the presence of an RNA genome, very closely resembled those of other fish rhabdoviruses. At present it is not known if this is a novel virus species or if it is an isolate of a known fish rhabdovirus. Until a confirmed identification can be made, we will temporarily refer to this virus as Chinese sucker rhabdovirus (CSRV).  相似文献   

17.
H Browne  S Bell  T Minson    D W Wilson 《Journal of virology》1996,70(7):4311-4316
Although it is generally accepted that one of the first steps of herpesvirus egress is the acquisition of an envelope by nucleocapsids budding into the inner nuclear membrane, later events in the pathway are not well understood. We tested the hypothesis that the virus then undergoes de-envelopment, followed by reenvelopment at membranes outside the endoplasmic reticulum (ER), by constructing a recombinant virus in which the expression of an essential glycoprotein, gH, is restricted to the inner nuclear membrane-ER by means of the ER retention motif, KKXX. This targeting signal conferred the predicted ER localization properties on gH in recombinant virus-infected cells, and gH and gL polypeptides failed to become processed to their mature forms. Cells infected with the recombinant virus released particles with 100-fold less infectivity than those released by cells infected with the wild-type parent virus, yet the number of enveloped virus particles released into the medium was unaltered. These particles contained normal amounts of gD and VP16 but did not contain detectable amounts of gH, and these data are consistent with a model of virus exit whereby naked nucleocapsids in the cytoplasm acquire their final envelope from a subcellular compartment other than the ER-inner nuclear membrane.  相似文献   

18.
Vaccinia virus (VV) morphogenesis commences with the formation of lipid crescents that grow into spherical immature virus (IV) and then infectious intracellular mature virus (IMV) particles. Early studies proposed that the lipid crescents were synthesized de novo and matured into IMV particles that contained a single lipid bilayer (S. Dales and E. H. Mosbach, Virology 35:564–583, 1968), but a more recent study reported that the lipid crescent was derived from membranes of the intermediate compartment (IC) and contained a double lipid bilayer (B. Sodiek et al., J. Cell Biol. 121:521–541, 1993). In the present study, we used high-resolution electron microscopy to reinvestigate the structures of the lipid crescents, IV, and IMV particles in order to determine if they contain one or two membranes. Examination of thin sections of Epon-embedded, VV-infected cells by use of a high-angular-tilt series of single sections, serial-section analysis, and high-resolution digital-image analysis detected only a single, 5-nm-thick lipid bilayer in virus crescents, IV, and IMV particles that is covered by a 8-nm-thick protein coat. In contrast, it was possible to discern tightly apposed cellular membranes, each 5 nm thick, in junctions between cells and in the myelin sheath of Schwann cells around neurons. Serial-section analysis and angular tilt analysis of sections detected no continuity between virus lipid crescents or IV particles and cellular membrane cisternae. Moreover, crescents were found to form at sites remote from IC membranes—namely, within the center of virus factories and within the nucleus—demonstrating that crescent formation can occur independently of IC membranes. These data leave unexplained the mechanism of single-membrane formation, but they have important implications with regard to the mechanism of entry of IMV and extracellular enveloped virus into cells; topologically, a one-to-one membrane fusion suffices for delivery of the IMV core into the cytoplasm. Consistent with this, we have demonstrated previously by confocal microscopy that uncoated virus cores within the cytoplasm lack the IMV surface protein D8L, and we show here that intracellular cores lack the surface protein coat and lipid membrane.  相似文献   

19.
Previous studies have suggested that Uukuniemi virus, a bunyavirus, matures at the membranes of the Golgi complex. In this study we have employed immunocytochemical techniques to analyze in detail the budding compartment(s) of the virus. Electron microscopy of infected BHK-21 cells showed that virus particles are found in the cisternae throughout the Golgi stack. Within the cisternae, the virus particles were located preferentially in the dilated rims. This would suggest that virus budding may begin at or before the cis Golgi membranes. The virus budding compartment was studied further by immunoelectron microscopy with a pre-Golgi intermediate compartment marker, p58, and a Golgi stack marker protein, mannosidase II (ManII). Virus particles and budding virus were detected in ManII-positive Golgi stack membranes and, interestingly, in both juxtanuclear and peripheral p58-positive elements of the intermediate compartment. In cells incubated at 15 degrees C the nucleocapsid and virus envelope proteins were seen to accumulate in the intermediate compartment. Immunoelectron microscopy demonstrated that at 15 degrees C the nucleocapsid is associated with membranes that show a characteristic distribution and tubulo-vesicular morphology of the pre-Golgi intermediate compartment. These membranes contained virus particles in the lumen. The results indicate that the first site of formation of Uukuniemi virus particles is the pre-Golgi intermediate compartment and that virus budding continues in the Golgi stack. The results raise questions about the intracellular transport pathway of the virus particles, which are 100 to 120 nm in diameter and are therefore too large to be transported in the 60-nm-diameter vesicles postulated to function in the intra-Golgi transport. The distribution of the virus in the Golgi stack may imply that the cisternae themselves have a role in the vectorial transport of virus particles.  相似文献   

20.
Morphology of structural components of nuclear polyhedrosis virus (NPV) particles of the silkworm (Bombyx mori Linné) was studied by electron microscope using negative staining. NPV particles isolated from polyhedra could be separated into five structural components by centrifugation in sucrose density gradients. The lowest band (band I) was found to consist of thick rod-shaped particles (330 by 80 nm) with knobby surfaces and with occasional protrusion at one end. The second band from the bottom (band II) was shown to consist mainly of slender rod-shaped particles (360 by 60 nm), in which internal structures were visible as a dense mass. Regular striations were also seen on the surface of these particles. By treatment with mercaptoethanol, these particles were drastically damaged, and in some cases the internal substances were partially released, producing empty inner membranes of various degrees of disintegration. In bands III and IV, both empty spherical and empty rod-shaped membranes were present. Band III was rich in empty spherical membranes which were shown to be the outer membranes of thick rod-shaped particles. The empty rod-shaped membranes, the inner membranes, were mainly located in band IV and have cross striations on the surface. It is remarkable that the uppermost band (band V) consisted purely of small spherical particles, somewhat heterogeneous in size and shape (around 20 to 25 nm in diameter), indicating the particles to be the degradation product of the virus particles. Similar particles could also be observed within the empty inner membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号