首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have analyzed 18 kb of DNA in and upstream of thedefective chorion-1 (dec-1) locus of the eight known species of themelanogaster species subgroup ofDrosophila. The restriction maps ofD. simulans, D. mauritiana, D. sechellia, D. erecta, andD. orena are shown to have basically the restriction map ofD. melanogaster, whereas the maps ofD. teissieri andD. yakuba were more difficult to align. However, the basic amount of DNA and sequence arrangement appear to have been conserved in these species. A small deletion of varying length (65–200 bp) is found in a repeated sequence of the central transcribed region ofD. melanogaster, D. simulans, andD. erecta. Restriction site mapping indicated that thedec-1 gene is highly conserved in themelanogaster species subgroup. However, sequence comparison revealed that the amount of nucleotide and amino acid substitution in the repeated region is much larger than in the 5 translated region. The 5 flanking region showed noticeable restriction site polymorphisms between species. Based on calculations from the restriction maps a dendrogram was derived that supports earlier published phylogenetic relationships within themelanogaster species subgroup except that theerecta-orena pair is placed closer to themelanogaster complex than toD. teissieri andD. yakuba.  相似文献   

2.
Summary Previous studies have demonstrated that the expression of the -amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the -amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.Offprint requests to: D.A. Hickey  相似文献   

3.
Larvae ofDrosophila melanogaster are polymorphic with respect to their foraging behavior. Rovers move around, while sitters stay more in one place. This difference in movements while foraging may result in differences in the rate at which these larvae are attacked by hymenopteran parasitoids, especially by those that locate their hosts by reacting to the vibrations they make. From previous work it is known thatD. melanogaster larvae show intra- and interpopulation variation in their ability to destroy parasitoid eggs by encapsulation. If rovers have a higher probability to be attacked by a parasitoid, they may have a higher developed encapsulation system as compensation for this higher attack probability. Experiments show that rovers are indeed more often attacked byAsobara tabida, a vibrotactic (=reacting to vibrations) parasitoid, than sitters. However, foraging behavior and encapsulation ability appear to be independent of each other inD. melanogaster. This shows that the large variation between populations in encapsulation ability is not a reflection of the relative proportion of rovers and sitters in the populations. It also shows that parasitoids can be an important factor in the maintenance of the foraging behavior polymorphism, because a higher encapsulation ability is not a compensation for a higher attack probability.  相似文献   

4.
We compare the 5S gene structure from nine Drosophila species. New sequence data (5S genes of D. melanogaster, D. mauritiana, D. sechellia, D. yakuba, D. erecta, D. orena, and D. takahashii) and already-published data (5S genes of D. melanogaster, D. simulans, and D. teissieri) are used in these comparisons. We show that four regions within the Drosophila 5S genes display distinct rates of evolution: the coding region (120 bp), the 5-flanking region (54–55 bp), the 3-flanking region (21–22 bp), and the internal spacer (149–206 bp). Intra- and interspecific heterogeneity is due mainly to insertions and deletions of 6–17-bp oligomers. These small rearrangements could be generated by fork slippages during replication and could produce rapid sequence divergence in a limited number of steps. Correspondence to: M. Wegnez  相似文献   

5.
Intercellular signaling molecules of the transforming growth factor- (TGF-) superfamily are required for pattern formation in many multicellular organisms. The decapentaplegic (dpp) gene of Drosophila melanogaster has several developmental roles. To improve our understanding of the evolutionary diversification of this large family we identified dpp in the grasshopper Schistocerca americana. S. americana diverged from D. melanogaster approximately 350 million years ago, utilizes a distinct developmental program, and has a 60-fold-larger genome than D. melanogaster. Our analyses indicate a single dpp locus in D. melanogaster and S. americana, suggesting that dpp copy number does not correlate with increasing genome size. Another TGF- superfamily member, the D. melanogaster gene 60A, is also present in only one copy in each species. Comparison of homologous sequences from D. melanogaster, S. americana, and H. sapiens, representing roughly 900 million years of evolutionary distance, reveals significant constraint on sequence divergence for both dpp and 60A. In the signaling portion of the dpp protein, the amino acid identity between these species exceeds 74%. Our results for the TGF- superfamily are consistent with current hypotheses describing gene duplication and diversification as a frequent response to high levels of selective pressure on individual family members.  相似文献   

6.
Ethanol tolerance, alcohol dehydrogenase (ADH;EC1.1.1.1) activity, and tissue-specific expression wereexamined in species of the cardini group ofDrosophila using D. melanogaster as astandard of comparison. In contrast to most fruit-breeding species, allcardini species examined, two from the cardini subgroupand five from the dunni subgroup, were ethanol sensitive(LC50 2.05%) and the mean ADH activityof males ranges from only 8 to 16% that of D.melanogaster AdhFF. Among all sevencardini species, there were small but significantdifferences in ethanol tolerance and ADH activity.Differences in enzyme mobility were in accordance with the proposedphylogeny for the dunni-subgroup species. ADH isexpressed in the fat body and midgut. Males of D.acutilabella and of D. belladunni havesignificantly less ethanol tolerance and express less ADH activitythan females in zymograms and histologicalpreparations.  相似文献   

7.
Although molecular and phenotypic evolution have been studied extensively in Drosophila melanogaster and its close relatives, phylogenetic relationships within the D. melanogaster species subgroup remain unresolved. In particular, recent molecular studies have not converged on the branching orders of the D. yakubaD. teissieri and D. erectaD. orena species pairs relative to the D. melanogasterD. simulansD. mauritianaD. sechellia species complex. Here, we reconstruct the phylogeny of the melanogaster species subgroup using DNA sequence data from four nuclear genes. We have employed vectorette PCR to obtain sequence data for orthologous regions of the Alcohol dehydrogenase (Adh), Alcohol dehydrogenase related (Adhr), Glucose dehydrogenase (Gld), and rosy (ry) genes (totaling 7164 bp) from six melanogaster subgroup species (D. melanogaster, D. simulans, D. teissieri, D. yakuba, D. erecta, and D. orena) and three species from subgroups outside the melanogaster species subgroup [D. eugracilis (eugracilis subgroup), D. mimetica (suzukii subgroup), and D. lutescens (takahashii subgroup)]. Relationships within the D. simulans complex are not addressed. Phylogenetic analyses employing maximum parsimony, neighbor-joining, and maximum likelihood methods strongly support a D. yakubaD. teissieri and D. erectaD. orena clade within the melanogaster species subgroup. D. eugracilis is grouped closer to the melanogaster subgroup than a D. mimeticaD. lutescens clade. This tree topology is supported by reconstructions employing simple (single parameter) and more complex (nonreversible) substitution models. Present address (Ryan M. David): University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284, USA  相似文献   

8.
Summary The Threonine-Glycine (Thr-Gly) region of the period gene (per) in Drosophila was compared in the eight species of the D. melanogaster subgroup. This region can be divided into a diverged variable-length segment which is flanked by more conserved sequences. The number of amino acids encoded in the variable-length region ranges from 40 in D. teissieri to 69 in D. mauritiana. This is similar to the range found within natural populations of D. melanogaster. It was possible to derive a Thr-Gly allele of one species from that of another by invoking hypothetical Thr-Gly intermediates. A phylogeny based on the more conserved flanking sequences was produced. The results highlighted some of the problems which are encountered when highly polymorphic genes are used to infer phylogenies of closely related species.  相似文献   

9.
In Drosophila melanogaster transformants, the alcohol dehydrogenase (Adh) genes from D. affinidisjuncta and D. grimshawi show similar levels of expression except in the adult midgut where the D. affinidisjuncta gene is expressed about 10- to 20-fold more strongly. To study the arrangement of cis-acting sequences responsible for this regulatory difference, homologous restriction sites were used to create a series of chimeric genes that switched fragments from the 5 and 3 flanking regions of these two genes. Chimeric genes were introduced into the germ-line of D. melanogaster, and Adh gene expression was analyzed by measuring RNA levels. Various gene fragments in the promoter region and elsewhere influence expression in the adult midgut and in whole larvae and adults. Comparison of these results with earlier studies involving chimeras between the D. affinidisjuncta and D. hawaiiensis genes indicates that expression in the adult midgut is influenced by multiple regulatory sequences and that distinct arrangements of regulatory sequences can result in similar levels of expression both in the adult midgut and in the whole organism.  相似文献   

10.
InDrosophila melanogaster, male wing vibration, a key element of courtship behaviour, is most efficiently induced by a female-specific contact pheromonecis, cis 7,11 heptacosadiene (7, 11 HD), which is the main mature female cuticular hydrocarbon in the CS laboratory strain. A study of 63 strains from around the world revealed that flies from Sub-Saharan Africa and the Caribbean are unique in showing low levels 7,11 HD and high levels of the position isomer 5,9 HD. This difference maps to chromosome III, perhaps indicating a simple genetic control of the 7,11 HD: 5,9 HD ratio. Females from strains with high levels of 7,11 HD showed higher levels of mating and mated more rapidly than females with low levels of 7,11 HD. The results are discussed in light of recent discoveries of genetic differences betweenD. melanogaster strains from Africa and those from elsewhere around the world.  相似文献   

11.
We identify an esterase isozyme inDrosophila melanogaster, EST 23, which shares biochemical, physiological, and genetic properties with esterase E3, which is involved in resistance to organophosphate insecticides inLucilia cuprina. Like E3, theD. melanogaster EST 23 is a membrane-bound -esterase which migrates slowly toward the anode at pH 6.8. Both enzymes have similar preferences for substrates with shorter acid side chain lengths. Furthermore, on the basis of their high sensitivity to inhibition by paraoxon and their insensitivity to inhibition by eserine sulfate, both enzymes were classified as subclass I carboxylesterases. The activity of each enzyme peaks early in development and, again, in the adult stage. Both enzymes are found in the male reproductive system and larval and adult digestive tissues, the latter being consistent with a role for these enzymes in organophosphate resistance. Fine structure deficiency mapping localizedEst 23 to cytological region 84D3 to E1-2 on the right arm of chromosome 3. Moreover, we show that the genes encoding three other esterase phenotypes also map to the same region; these phenotypes involve allozymic differences in EST 9 (formerly EST C), ali-esterase activity, defined by the hydrolysis of methyl butyrate, and malathion carboxylesterase activity, defined by hydrolysis of the organophosphate malathion. This cluster corresponds closely to that encompassing E3 and malathion carboxylesterase on chromosome 4 inL. cuprina, the homologue of chromosome 3R inD. melanogaster.  相似文献   

12.
Summary A 2.1-kb SStI fragment including the rp49 gene and the 3 end of the -serendipity gene has been cloned and sequenced in Drosophila pseudoobscura. rp49 maps at region 62 on the tip of chromosome II of this species. Both the coding and flanking regions have been aligned and compared with those of D. subobscura. There is no evidence for heterogeneity in the rate of silent substitution between the rp49 coding region and the rate of substitutions in flanking regions, the overall silent divergence per site being 0.19. Noncoding regions also differ between both species by different insertions/deletions, some of which are related to repeated sequences. The rp49 region of D. pseudoobscura shows a strong codon bias similar to those of D. subobscura and D. melanogaster. Comparison of the rates of silent (K S ) and nonsilent (K a ) substitutions of the rp49 gene and other genes completely sequenced in D. pseudoobscura and D. melanogaster confirms previous results indicating that rp49 is evolving slowly both at silent and nonsilent sites. According to the data for the rp49 region, D. pseudoobscura and D. subobscura lineages would have diverged some 9 Myr ago, if one assumes a divergence time of 30 Myr for the melanogaster and obscura groups.Offprint requests to: C. Segarra  相似文献   

13.
Kyriacou CP 《Genetica》2002,116(2-3):197-203
The molecular analysis of specific mutant genes that affect the courtship behaviours of Drosophila melanogaster males and females is discussed in the light of the possibility that they may contribute to mate choice. There is clear evidence that some genes can act as a reservoir of species-specific behaviour, particularly for the male actions during courtship. However, to date there has not been a single genetic locus that has been isolated at the molecular level and shown to be associated with a change in female preference. There are some promising avenues of exploration, in that recent genetic analyses suggest that a small number of genes may make major contributions to female preferences. Finally a candidate gene approach is advocated in which orthologous genes from other species of Drosophila are used as natural mutations, and transformed into D. melanogaster hosts to investigate whether they carry species-specific mating information of the donor.  相似文献   

14.
Purified thermostable alcohol dehydrogenase allozymes ADH-71k and ADH-FCh.D. ofDrosophila melanogaster have been compared with the two common enzyme forms ADH-F and ADH-S. Enzyme kinetic parameters for various primary and secondary alcohols were determined under standard conditions used previously. Both ADH-71k and ADH-FCh.D. show ADH-S-like reaction kinetics andK m values, due to retrograde evolution at site 214, Pro Ser. Inhibition studies with alcohol dehydrogenase inhibitors pyrazole, 4-methylpyrazole, and cibacron blue 3GA were also performed. Activity measurements on crude extracts of larvae and flies from isogenic lines of ADH-FCh.D. revealed a consistently higher activity than in ADH-71k-containing strains, in contrast to the original strains.K.Th.E is indebted to the Royal Norwegian Council for Technological and Scientific Research for their postdoctoral fellowship. Prof. J. S. McKinley-McKee gave me the opportunity to work in his laboratory. I thank Dr. Knut Sletten of the Biochemical Institute for the kind gift of 2-methoxyethanol and amino acid analysis of some samples. The Biological Institute, Oslo, Section of General Genetics, is gratefully acknowledged for enabling me to use their fly-breeding facilities. Dr. John B. Gibson provided us with a sample of FCh.D. flies for the construction of isogenic lines in which Dr. Johan Hageman participated, owing to Postdoctoral Grant 436-931-P from the Foundation of Biological Research (BION), which is subsidized by the Netherlands Organization for Scientific Research (NWO). J. H. and Paula Truyens were involved in the measurements on the crude extracts. Work at Victoria University was supported by the VUW Internal Grant Committee.  相似文献   

15.
16.
Summary We transplanted pole cells betweenDrosophila melanogaster, D. mauritiana andD. ananassae to investigate the ability of germ cells to develop in the gonad of a heterospecific host, and to study the interaction between somatic follicle cells and the cells of the germ line in producing the species-specific chorion. FemaleD. mauritiana germ cells in aD. melanogaster ovary produced functional eggs with normal development potential. The same is true for the reciprocal combination. FemaleD. ananassae pole cells in aD. melanogaster host only developed to a very early stage and degenerated afterwards. None of the interspecific combinations of male pole cells led to functional sperm. We could not determine at what stage the transplanted male pole cells were arrested. The cooperation of follicle cells and the oocyte-nurse cell complex in producing the chorion was studied using the germ-line-dependent mutationfs(1) K10 ofD. melanogaster, which causes fused respiratory appendages and an abnormal chorion morphology. Wild-type femaleD. mauritiana germ cells in a mutantfs(1) K10 D. melanogaster ovary led to the production of wild-type eggs withD. melanogaster-specific, short respiratory appendages. On the other hand,D. melanogaster fs(1) K10 germ cells in aD. mauritiana ovary induced the formation of eggs with mutant fused appendages which were, however, typicallyD. mauritiana in length. When.D. mauritiana pole cells developed in aD. melanogaster ovary, the chorion exhibited a new imprint pattern that differs from both species-specific patterns.  相似文献   

17.
Drosophila, a dipteran insect, has been found to be the best biological model for different kinds of studies. D melanogaster was first described by Meigen in 1830, is most extensively studied species of the genus Drosophila and a number of investigations employing this species have been documented in areas such as genetics, behaviour, evolution, development, molecular biology, ecology, population biology, etc. Besides D. melanogaster, a number of other species of the genus Drosophila have also been used for different kinds of investigations. Among these, D. ananassae, a cosmopolitan and domestic species endowed with several unusual genetic features, is noteworthy. Described for the first time from Indonesia (Doleschall 1858), this species is commonly distributed in India. Extensive research work on D. ananassae has been done by numerous researchers pertaining to cytology, genetics, mutagenesis, gene mapping, crossing-over in both sexes, population and evolutionary genetics, behaviour genetics, ecological genetics, sexual isolation, fluctuating asymmetry, trade-offs etc. Genome of D. ananassae has also been sequenced. The status of research on D. ananassae at global level is briefly described in this review. Bibliography on this species from different countries worldwide reveals that maximum contribution is from India.  相似文献   

18.
Purified amylases from high- and low-activity variants of Drosophila melanogaster showed identical specific activities. Immunoelectrophoresis of crude larval homogenates showed severalfold differences between strains in the amounts of cross-reacting material. Control of amylase activity is trans-acting in heterozygotes between high- and low-activity variants. These results suggest the existence of polymorphic regulatory genes affecting the production levels of amylase protein in D. melanogaster.This work was supported by Grant GM-21279 from the Institute of General Medical Science of the NIH to R. C. Lewontin and by an Operating Grant from the Natural Sciences and Engineering Research Council Canada to D. A. Hickey.  相似文献   

19.
Itoh M  Yu S  Watanabe TK  Yamamoto MT 《Genetica》1999,106(3):223-229
To examine whether structural and functional differences exist in the proliferation disrupter (prod) genes between Drosophila simulans and D. melanogaster, we analyzed and compared both genes. The exon–intron structure of the genes was found to be the same – three exons were interrupted by two introns, although a previous report suggested that only one intron existed in D. melanogaster. The prod genes of D. simulans and D. melanogaster both turn out to encode 346 amino acids, not 301 as previously reported for D. melanogaster. The numbers of nucleotide substitutions in the prod genes was 0.0747 ±  per synonymous site and 0.0116 ± 0.0039 per replacement site, both comparable to those previously known for homologous genes between D. simulans and D. melanogaster. Genetic analysis demonstrated that D. simulans PROD can compensate for a deficiency of D. melanogaster PROD in hybrids. The PRODs of D. simulans and D. melanogaster presumably share the same function and a conserved working mechanism. The prod gene showed no significant interaction with the lethality of the male hybrid between these species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Neuropeptides in interneurons of the insect brain   总被引:5,自引:0,他引:5  
A large number of neuropeptides has been identified in the brain of insects. At least 35 neuropeptide precursor genes have been characterized in Drosophila melanogaster, some of which encode multiple peptides. Additional neuropeptides have been found in other insect species. With a few notable exceptions, most of the neuropeptides have been demonstrated in brain interneurons of various types. The products of each neuropeptide precursor seem to be co-expressed, and each precursor displays a unique neuronal distribution pattern. Commonly, each type of neuropeptide is localized to a relatively small number of neurons. We describe the distribution of neuropeptides in brain interneurons of a few well-studied insect species. Emphasis has been placed upon interneurons innervating specific brain areas, such as the optic lobes, accessory medulla, antennal lobes, central body, and mushroom bodies. The functional roles of some neuropeptides and their receptors have been investigated in D. melanogaster by molecular genetics techniques. In addition, behavioral and electrophysiological assays have addressed neuropeptide functions in the cockroach Leucophaea maderae. Thus, the involvement of brain neuropeptides in circadian clock function, olfactory processing, various aspects of feeding behavior, and learning and memory are highlighted in this review. Studies so far indicate that neuropeptides can play a multitude of functional roles in the brain and that even single neuropeptides are likely to be multifunctional.The original research in the authors’ laboratories was supported by DFG grants HO 950/14 and 950/16 (U.H.) and Swedish Research Council grant VR 621-2004-3715 (D.R.N).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号