共查询到20条相似文献,搜索用时 0 毫秒
1.
Human land-use effects on species populations are minimized in protected areas and population changes can thus be more directly linked with changes in climate. In this study, bird population changes in 96 protected areas in Finland were compared using quantitative bird census data, between two time slices, 1981-1999 and 2000-2009, with the mean time span being 14 years. Bird species were categorized by distribution pattern and migratory strategy. Our results showed that northern bird species had declined by 21 per cent and southern species increased by 29 per cent in boreal protected areas during the study period, alongside a clear rise (0.7-0.8 °C) in mean temperatures. Distribution pattern was the main factor, with migratory strategy interacting in explaining population changes in boreal birds. Migration strategy interacted with distribution pattern so that, among northern birds, densities of both migratory and resident species declined, whereas among southern birds they both increased. The observed decline of northern species and increase in southern species are in line with the predictions of range shifts of these species groups under a warming climate, and suggest that the population dynamics of birds are already changing in natural boreal habitats in association with changing climate. 相似文献
2.
Mountain birch, Betula pubescens ssp. tortuosa, forms the treeline in northern Sweden. A recent shift in the range of the species associated with an elevation of the treeline is commonly attributed to climate warming. Using microsatellite markers, we explored the genetic structure of populations along an altitudinal gradient close to the treeline. Low genetic differentiation was found between populations, whereas high genetic diversity was maintained within populations. High level of gene flow compensated for possible losses of genetic diversity at higher elevations and dissipated the founding effect of newly established populations above the treeline. Spatial autocorrelation analysis showed low spatial genetic structure within populations because of extensive gene flow. At the treeline, significant genetic structure within the juvenile age class at small distances did not persist in the adult age class, indicating recent expansion of young recruits due to the warming of the climate. Finally, seedling performance above the treeline was positively correlated with parameters related to temperature. These data confirm the high migration potential of the species in response to fluctuating environmental conditions and indicate that it is now invading higher altitudes due to the recent warming of the climate. 相似文献
3.
4.
Although boreal forests are currently sinks for atmospheric C, there is some concern that they may not remain so under hypothesized warming of the boreal climate. The ecosystem model ecosys was used to evaluate possible changes in ecosystem C exchange and accumulation under changes in atmospheric CO2 concentration (Ca) proposed in emissions scenario IS92a, and accompanying changes in air temperature and precipitation proposed by general circulation models running under IS92a. Ecosys was first tested under current climate by comparing modelled rates of C exchange and accumulation with those measured in a mixed aspen–hazelnut stand in central Saskatchewan. The model was then run with daily increments of Ca, temperature and precipitation, and differences in C exchange and accumulation between current and changing climates were evaluated. Model results indicated that over a 120‐y period, a mixed aspen–hazelnut stand currently accumulates about 14 kg C m?2. Under the hypothesized changes in climate this stand would accumulate an additional 8.5 kg C m?2, largely through higher rates of CO2 fixation and longer growing seasons under higher Ca and temperature. This additional accumulation would be entirely as aspen wood, while soil organic matter would change little. This accumulation would therefore be vulnerable to losses from fire and insects. 相似文献
5.
Understanding the response of terrestrial ecosystems to climatic warming is a challenge because of the complex interactions of climate, disturbance, and recruitment across the landscape. We use a spatially explicit model (ALFRESCO) to simulate the transient response of subarctic vegetation to climatic warming on the Seward Peninsula (80 000 km2) in north‐west Alaska. Model calibration efforts showed that fire ignition was less sensitive than fire spread to regional climate (temperature and precipitation). In the model simulations a warming climate led to slightly more fires and much larger fires and expansion of forest into previously treeless tundra. Vegetation and fire regime continued to change for centuries after cessation of the simulated climate warming. Flammability increased rapidly in direct response to climate warming and more gradually in response to climate‐induced vegetation change. In the simulations warming caused as much as a 228% increase in the total area burned per decade, leading to an increasingly early successional and more homogenous deciduous forest‐dominated landscape. A single transient 40‐y drought led to the development of a novel grassland–steppe ecosystem that persisted indefinitely and caused permanent increases in fires in both the grassland and adjacent vegetation. These simulated changes in vegetation and disturbance dynamics under a warming climate have important implications for regional carbon budgets and biotic feedbacks to regional climate. 相似文献
6.
JACQUELYN KREMPER SHUMAN HERMAN HENRY SHUGART THOMAS LIAM O'HALLORAN 《Global Change Biology》2011,17(7):2370-2384
The Northern Hemisphere's boreal forests, particularly the Siberian boreal forest, may have a strong effect on Earth's climate through changes in dominant vegetation and associated regional surface albedo. We show that warmer climate will likely convert Siberia's deciduous larch (Larix spp.) to evergreen conifer forests, and thus decrease regional surface albedo. The dynamic vegetation model, FAREAST, simulates Russian boreal forest composition and was used to explore the feedback between climate change and forest composition at continental, regional, and local scales. FAREAST was used to simulate the impact of changes in temperature and precipitation on total and genus‐level biomass at sites across Siberia and the Russian Far East (RFE), and for six high‐ and low‐diversity regions. Model runs with and without European Larch (Larix decidua) included in the available species pool were compared to assess the potential for this species, which is adapted to warmer climate conditions, to mitigate the effects of climate change, especially the shift to evergreen dominance. At the continental scale, when temperature is increased, larch‐dominated sites become vulnerable to early replacement by evergreen conifers. At the regional and local scales, the diverse Amur region of the RFE does not show a strong response to climate change, but the low‐diversity regions in central and southern Siberia have an abrupt vegetation shift from larch‐dominated forest to evergreen‐conifer forest in response to increased temperatures. The introduction of L. decidua prevents the collapse of larch in these low‐diversity areas and thus mitigates the response to warming. Using contemporary MODIS albedo measurements, we determined that a conversion from larch to evergreen stands in low‐diversity regions of southern Siberia would generate a local positive radiative forcing of 5.1±2.6 W m?2. This radiative heating would reinforce the warming projected to occur in the area under climate change. 相似文献
7.
Climate change: the science and the policy 总被引:4,自引:3,他引:4
DAVID KING 《Journal of Applied Ecology》2005,42(5):779-783
8.
The problem of global climate change is analyzed in the context of the balance of interdependent biotic sources and reservoirs of greenhouse gases in the continental part of northern Eurasia. Current problems are identified and the prospects for further studies of the problem are outlined. 相似文献
9.
C. P. S. Larsen 《Journal of Biogeography》1997,24(5):663-673
Abstract. Spatial and temporal variations in fire frequency in the boreal forest of Wood Buffalo National Park (WBNP) were assessed using forest stand age, fire scar and historical data. I test the hypotheses that (1) fire frequency is higher in jack pine forests and aspen forests than in black spruce forests and white spruce forests, (2) these variations in fire frequency can be related to the mean waterbreak distance (MWD) around a site and (3) fire frequency has changed over the past 300 years. The fire cycles (the time required to burn an area equal in size to the entire study area) in jack pine forests (39 years) and in aspen forests (39 years) were significantly shorter than those in black spruce forests (78 years) and in white spruce forests (96 years). The length of the fire cycle varies inversely with the MWD around a site, and the MWD was significantly higher in jack pine and aspen forests than in black or white spruce forests. It is suggested that covariations between soil type and the MWD influence, respectively, variations in forest dominant and fire frequency. A change in fire frequency at 1860 was apparent in the fire history for all of WBNP, the black spruce dominated stands, and the near and medium MWD classes. The fire cycle estimates for these classes were all significantly shorter during the period 1750 to 1859 (fire cycles = 25–49 years) than they were in the period 1860 to 1989 (fire cycles = 59–89 years). The possible roles of changes in climate and aboriginal burning practices in causing the temporal change in fire frequency are discussed. 相似文献
10.
11.
Jonathan A. O’Donnell Merritt R. Turetsky Jennifer W. Harden Kristen L. Manies Lee E. Pruett Gordon Shetler Jason C. Neff 《Ecosystems》2009,12(1):57-72
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary
studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition
and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation
effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the
study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE)
and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites)
and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity
of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition
rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved
organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our
field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil
temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with
soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled
by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned
than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire
can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained
following fire by changes in moisture and/or substrate quality that impede rates of decomposition.
Author contributions: JAO: performed research, analyzed data, contributed new methods, wrote the paper; MRT: designed laboratory study, performed
research, analyzed data; JWH: designed field study, performed research; KLM: performed research; LEP: performed research,
contributed new method; GS: performed research; JCN: performed research. 相似文献
12.
《Plant Ecology & Diversity》2013,6(3-4):355-364
Background: The alpine treeline ecotone is regarded as a sensor of the effects of global change on alpine plant communities. However, little is known about how treeline dynamics influence the diversity and composition of alpine plant communities. Such information is necessary to forecast how ascending montane forests may affect the composition of alpine flora. Aims: We analysed the temporal variations in tree cover, plant diversity and composition, and the effect of tree cover dynamics on field layer vegetation over a period of 11 years, at two alpine treeline ecotones in the central Pyrenees, Spain. Methods: Tree and field layer vegetation was sampled in permanent transects in 1998 and 2009, using the point-intercept method. Temporal changes in tree cover, plant species richness and abundance were characterised along the ecotone by using a randomisation approach, rarefaction curves, and a non-parametric multivariate test, respectively. Results: Tree cover increased significantly at one of the sites, whereas plant species richness only increased at the other site where tree cover had not changed. Vegetation composition changed significantly at both sites, but it was not spatially coupled with changes in tree cover along the ecotone. Conclusions: A change of tree cover does not necessarily trigger changes in the ground flora at the treeline over relatively short periods (decade scale). The results challenge our ability to infer short-term biodiversity impacts from upslope advance of forests. Integrated tree and field layer monitoring approaches are necessary to produce a better understanding of the impact of ongoing global change on treeline ecotones. 相似文献
13.
Andreas Hemp 《African Journal of Ecology》2009,47(S1):3-10
Cloud forests are of great importance in the hydrological functioning of watersheds in subhumid East Africa. However, the montane forests of Mt. Kilimanjaro are heavily threatened by global change impacts. Based on an evaluation of over 1500 vegetation plots and interpretation of satellite imagery from 1976 and 2000, land-cover changes on Kilimanjaro were evaluated and their impact on the water balance estimated. While the vanishing glaciers of Kilimanjaro attract broad interest, the associated increase of frequency and intensity of fires on the slopes of Kilimanjaro is less conspicuous but ecologically far more significant. These climate change-induced fires have lead to changes in species composition and structure of the forests and to a downward shift of the upper forest line by several hundred metres. During the last 70 years, Kilimanjaro has lost nearly one-third of its forest cover, in the upper areas caused by fire, on the lower forest border mainly caused by clearing. The loss of 150 km2 of cloud forest – the most effective source in the upper montane and subalpine fog interception zone – caused by fire during the last three decades means a considerable reduction in water yield. In contrast to common belief, global warming does not necessarily cause upward migration of plants and animals. On Kilimanjaro the opposite trend is under way, with consequences more harmful than those due to the loss of the showy ice cap of Africa's highest mountain. 相似文献
14.
Anthony J. Richardson Christopher J. Brown Keith Brander John F. Bruno Lauren Buckley Michael T. Burrows Carlos M. Duarte Benjamin S. Halpern Ove Hoegh-Guldberg Johnna Holding Carrie V. Kappel Wolfgang Kiessling Pippa J. Moore Mary I. O'Connor John M. Pandolfi Camille Parmesan David S. Schoeman Frank Schwing William J. Sydeman Elvira S. Poloczanska 《Biology letters》2012,8(6):907-909
A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change. 相似文献
15.
16.
MELISSA MARTIN KONSTANTIN GAVAZOV CHRISTIAN KÖRNER STEPHAN HÄTTENSCHWILER CHRISTIAN RIXEN 《Global Change Biology》2010,16(3):1057-1070
The frequency of freezing events during the early growing season and the vulnerability to freezing of plants in European high‐altitude environments could increase under future atmospheric and climate change. We tested early growing season freezing sensitivity in 10 species, from four plant functional types (PFTs) spanning three plant growth forms (PGFs), from a long‐term in situ CO2 enrichment (566 vs. 370 ppm) and 2‐year soil warming (+4 K) experiment at treeline in the Swiss Alps (Stillberg, Davos). By additionally tracking plant phenology, we distinguished indirect phenology‐driven CO2 and warming effects from direct physiology‐related effects on freezing sensitivity. The freezing damage threshold (lethal temperature 50) under ambient conditions of the 10 treeline species spanned from ?6.7±0.3 °C (Larix decidua) to ?9.9±0.6 °C (Vaccinium gaultherioides). PFT, but not PGF, explained a significant amount of this interspecific variation. Long‐term exposure to elevated CO2 led to greater freezing sensitivity in multiple species but did not influence phenology, implying that physiological changes caused by CO2 enrichment were responsible for the effect. The elevated CO2 effect on freezing resistance was significant in leaves of Larix, Vaccinium myrtillus, and Gentiana punctata and marginally significant in leaves of Homogyne alpina and Avenella flexuosa. No significant CO2 effect was found in new shoots of Empetrum hermaphroditum or in leaves of Pinus uncinata, Leontodon helveticus, Melampyrum pratense, and V. gaultherioides. Soil warming led to advanced leaf expansion and reduced freezing resistance in V. myrtillus only, whereas Avenella showed greater freezing resistance when exposed to warming. No effect of soil warming was found in any of the other species. Effects of elevated CO2 and soil warming on freezing sensitivity were not consistent within PFTs or PGFs, suggesting that any future shifts in plant community composition due to increased damage from freezing events will likely occur at the individual species level. 相似文献
17.
H?vard Kauserud Einar Heegaard Mikhail A. Semenov Lynne Boddy Rune Halvorsen Leif Chr. Stige Tim H. Sparks Alan C. Gange Nils Chr. Stenseth 《Proceedings. Biological sciences / The Royal Society》2010,277(1685):1169-1177
Most macrofungi produce ephemeral fruit bodies during autumn but some have adapted to spring fruiting. In this study, temporal changes in the time of spring fruiting in Norway and the UK during 1960–2007 have been investigated by statistical analyses of about 6000 herbarium and field records, covering 34 species. Nearly 30 per cent of the temporal variation in fruiting could be ascribed to spatial and species-specific effects. Correcting for these effects, linear trends towards progressively earlier fruiting were detected during the entire period in both Norway and the UK, with a change in average fruiting day of 18 days over the study period. Early fruiting was correlated with high winter temperatures in both countries, indicating that the observed phenological changes are likely due to earlier onset of spring. There were also significant correlations between climatic conditions in one year and timing of fruiting the following year, indicating that below-ground mycelia are influenced by climatic conditions over a longer time period before fruiting. Fruiting dates were, however, not strictly related to changes in vernal accumulated thermal time. Our results indicate that global warming has lead to progressively earlier fruiting of spring fungi in northwest Europe during the last half century. 相似文献
18.
陕北气候变化与生态植被变迁 总被引:9,自引:1,他引:9
分析了128万年以来陕北气候变化及其生态植被变迁。结果表明,陕北黄土高原气候经历了多次冷、暖、干、湿的周期变化。陕北植被变迁在地质时期以及历史时期早期,主要由气候条件所控制,植被类型随气候的冷暖干湿变化而变迁。随着人类活动的加剧,气候条件不再是影响植被变迁的唯一因素,人类活动对植被的影响愈来愈明显。明清时期,气候冷干,旱灾频繁.陕北生态环境脆弱,大规模垦殖和滥烧使自然植被迅速减少,陕北自然植被遭到毁灭性破坏。20世纪50年代,陕北逐步开始生态环境治理,在对生态环境治理的同时,又对部分地区自然植被进行破坏。20世纪80年代以后,生态环境总体上趋于好转。 相似文献
19.
There is increasing consensus that the global climate will continue to warm over the next century. The biodiversity-rich Amazon forest is a region of growing concern because many global climate model (GCM) scenarios of climate change forecast reduced precipitation and, in some cases, coupled vegetation models predict dieback of the forest. To date, fires have generally been spatially co-located with road networks and associated human land use because almost all fires in this region are anthropogenic in origin. Climate change, if severe enough, could alter this situation, potentially changing the fire regime to one of increased fire frequency and severity for vast portions of the Amazon forest. High moisture contents and dense canopies have historically made Amazonian forests extremely resistant to fire spread. Climate will affect the fire situation in the Amazon directly, through changes in temperature and precipitation, and indirectly, through climate-forced changes in vegetation composition and structure. The frequency of drought will be a prime determinant of both how often forest fires occur and how extensive they become. Fire risk management needs to take into account landscape configuration, land cover types and forest disturbance history as well as climate and weather. Maintaining large blocks of unsettled forest is critical for managing landscape level fire in the Amazon. The Amazon has resisted previous climate changes and should adapt to future climates as well if landscapes can be managed to maintain natural fire regimes in the majority of forest remnants. 相似文献
20.
《Plant Ecology & Diversity》2013,6(3):319-333
ABSTRACTBackground: Topoclimate can influence tree establishment within treeline ecotones. Yet much less is known about how regional topography, such as the Continental Divide, Rocky Mountains, mediates the role of climate in governing treeline dynamics.Aims: To utilise the Continental Divide to test whether contrasts in growing-season moisture regimes to the west (summer-dry) and east (summer-wet) impact the spatio-temporal patterns of tree establishment and rates of treeline advance in the Northern Rocky Mountains.Methods: We sampled trees at sites on north- and south-facing slopes, west and east of the Continental Divide. We used dendroecological techniques to reconstruct patterns of tree establishment. Age-structure data were quantitatively compared with climate to evaluate possible mechanistic linkages.Results: Across all sites, 96% of trees established after 1950. There was a treeline advance (range = 39–140 m) accompanied by increases in tree density. Significantly more trees established during wet springs on both sides of the Divide.Conclusions: Overall, snow duration in spring and autumn temperatures appear to influence patterns of tree recruitment at the treeline. Continued warming will likely amplify the role of autumn climate in regulating tree establishment throughout treeline ecotones in the Northern Rocky Mountains, particularly west of the Divide where summer-dry conditions persist. 相似文献