首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The efflux of 42K+ from the matrix of isolated heart mitochondria under conditions of steady state K+ has the properties of an energy-linked K+K+ exchange reaction. Efflux requires respiration and external K+, is sensitive to uncouplers and to Mg+2, and is markedly decreased by oxidative phosphorylation. Efflux is stimulated by Pi and by mersalyl, but declines under conditions which promote net uptake of K+ and acetate. Acetate strongly inhibits efflux in the presence of mersalyl. These data suggest that mitochondrial K+ levels are not maintained by a balance between inward K+ pumping and a passive outward leak, but rather that a nearly constant K+ pool results from a regulated interplay between an inward K+ uniport (responsive to membrane potential) and a K+H+ exchanger (responsive to the transmembrane pH gradient).  相似文献   

2.
The efflux 42K+ from isolated beef heart mitochondria under conditions of near steadystate K+ is increased by repiration and is sensitive to uncouplers and to exogenous Mg2 The respiration-dependent efflux is strongly activated by inorganic phosphate in the presence of external K+, but not Na+, and is inhibited by oxidative phosphorylation. Low concentrations of mersalyl also activate respiration-dependent efflux of 42K+ in the absence of net alteration in matrix K+. Acetate in the presence of mersalyl brings about net accumulation of K+ with retention of internal 42K+. The results are consistent with a model in which nearly constant matrix K+ is maintained by the regulated interplay between a K+ uniport (which is responsive to membrane potential and which is the pathway for K+ influx) and a K+H+ exchanger (which responds to the transmembrane pH differential and which is the pathway for net K+ efflux).  相似文献   

3.
Heart mitochondria swollen passively in nitrate salts contract in a respiration-dependent reaction which can be attributed to an endogenous cation/H+ exchange component (or components). The rate of contraction increases with increased extent of passive swelling in both Na+ and K+ salts. Since nearly constant internal cation concentrations are maintained during osmotic swelling, this result suggests that both Na+/H+ and K+/H+ exchange is enhanced by increased matrix volume. Endogenous Mg2+ is also lost with increased matrix volume, and this observation, in conjunction with other evidence available in the literature, suggests that monovalent cation/H+ exchanges may be regulated by divalent cations. Passive exchange of Na+/K+,42K+/K+, and24Na+/Na+ can be readily demonstrated in mitochondria swollen in nitrate. All these exchanges are low or not detectable in unswollen control mitochondria, and it appears that they are manifestations of the activated cation/H+ component (or components) functioning in the absence of pH.  相似文献   

4.
5.
《BBA》2022,1863(8):148908
Mitochondria play an important role not only in producing energy for the cell but also for regulating mitochondrial and cell function depending on the cell's needs and environment. Uptake of cations, anions, and substrates requires a stable, polarized transmembrane charge potential (ΔΨm). Chemiosmosis requires ion exchangers to remove Na+, K+, Ca2+, PO43?, and other charged species that enter mitochondria. Knowledge of the kinetics of mitochondrial (m) cation channels and exchangers is important in understanding their roles in regulating mitochondrial chemiosmosis and bioenergetics. The influx/efflux of K+, the most abundant mitochondrial cation, alters mitochondrial volume and shape by bringing in anions and H2O by osmosis. The effects of K+ uptake through ligand-specific mK+ channels stimulated/inhibited by agonists/antagonists on mitochondrial volume (swelling/contraction) are well known. However, a more important role for K+ influx is likely its effects on H+ cycling and bioenergetics facilitated by mitochondrial (m) K+/H+ exchange (mKHE), though the kinetics and consequences of K+ efflux by KHE are not well described. We hypothesized that a major role of K+ influx/efflux is stimulation of respiration via the influx of H+ by KHE. We proposed to modulate KHE activity by energizing guinea pig heart isolated mitochondria and by altering the mK+ cycle to capture changes in mitochondrial volume, pHm, ΔΨm, and respiration that would reflect a role for H+ influx via KHE to regulate bioenergetics. To test this, mitochondria were suspended in a 150 mM K+ buffer at pH 6.9, or in a 140 mM Cs+ buffer at pH 7.6 or 6.9 with added 10 mM K+, minimal Ca2+ and free of Na+. O2 content was measured by a Clark electrode, and pHm, ΔΨm, and volume, were measured by fluorescence spectrophotometry and light-scattering. Adding pyruvic acid (PA) alone caused increases in volume and respiration and a rapid decrease in the transmembrane pH gradient (ΔpHm = pHin–pHext) at pHext 6.9> > 7.6, so that ΔΨm was charged and maintained. BKCa agonist NS1619 and antagonist paxilline modified these effects, and KHE inhibitor quinine and K+ ionophore valinomycin depolarized ΔΨm. We postulate that K+ efflux-induced H+ influx via KHE causes an inward H+ leak that stimulates respiration, but at buffer pH 6.9 also utilizes the energy of ΔpHm, the smaller component of the overall proton motive force, ΔμH+. Thus ΔpHm establishes and maintains the ΔΨm required for utilization of substrates, entry of all cations, and for oxidative phosphorylation. Thus, K+ influx/efflux appears to play a pivotal role in regulating energetics while maintaining mitochondrial ionic balance and volume homeostasis.  相似文献   

6.
K+/H+ antiport in heart mitochondria   总被引:2,自引:0,他引:2  
Heart mitochondria depleted of endogenous divalent cations by treatment with A23187 and EDTA swell in (a) K+ acetate or (b) K+ nitrate when an uncoupler is present. These mitochondria also exchange matrix 42K+ with external K+, Na+, or Li+ in a reaction that does not require respiration and is insensitive to uncouplers. Untreated control mitochondria do not swell in either medium nor do they show the passive cation exchange. Both the swelling and the exchange reactions are inhibited by Mg2+ and by quinine and other lipophilic amines. Swelling and exchange are both strongly activated at alkaline pH, and the exchange reaction is also increased markedly by hypotonic conditions. All of these properties correspond to those reported for a respiration-dependent extrusion of K+ from Mg2+-depleted mitochondria, a reaction attributed to a latent Mg2+- and H+-sensitive K+/H+ antiport. The swelling reactions are strongly inhibited by dicyclohexylcarbodiimide reacted under hypotonic conditions, but the exchange reaction is not sensitive to this reagent. Heart mitochondria depleted of Mg2+ show marked increases in their permeability to H+, to anions, and possibly to cations, and the permeability to each of these components is further increased at alkaline pH. This generalized increase in membrane permeability makes it likely that K+/H+ antiport is not the only pathway available for K+ movement in these mitochondria. It is concluded that the swelling, 42K+ exchange, and K+ extrusion data are all consistent with the presence of the putative K+/H+ antiport but that definitive evidence for the participation of such a component in these reactions is still lacking.  相似文献   

7.
Quinine inhibits the respiration-dependent extrusion of K+ from Mg2+-depleted heart mitochondria and the passive osmotic swelling of these mitochondria in K+ and Na+ acetate at alkaline pH. These observations concur with those of Nakashima and Garlid (J. Biol. Chem. 257, 9252, 1982) using rat liver mitochondria. Quinine also inhibits the respiration-dependent contraction of heart mitochondria swollen passively in Na+ or K+ nitrate and the increment of elevated respiration associated with the extrusion of ions from these mitochondria. Quinine, at concentrations up to 0.5 mM, inhibits the respiration-dependent42K+/K+ exchange seen in the presence of mersalyl, but higher levels of the drug produce increased membrane permeability and net K+ loss from the matrix. These results are all consistent with an inhibition of the putative mitochondrial K+/H+ antiport by quinine. However, quinine has other effects on the mitochondrial membrane, and possible alternatives to this interpretation are discussed.  相似文献   

8.
9.
The interaction of ochratoxin A, a mycotoxin produced by Aspergillus ochraceus, with isolated rat liver mitochondria and plasma membranes has been studied. Cell membranes bind [14C]ochratoxin A poorly and do not show saturation in the concentration range examined. The uptake of the toxin by mitochondria is saturable, with an apparent Km at 0 °C of 30 nmol/mg of protein. Sonication or freeze-thawing reduces the extent of incorporation by 88%. Ochratoxin A uptake is energy dependent, resulting in a depletion of intramitochondrial ATP. Uncouplers such as m-chlorocarbonylcyanide phenylhydrazone or the respiratory inhibitors rotenone and antimycin A inhibit uptake 60–85%, while ATP reverses the antimycin and rotenone inhibition. Phosphate transport is sensitive to inhibition by the toxin, as measured by Ca2+ plus Pistimulated respiration and [32P]Pi incorporation. In turn, phosphate inhibits nearly completely [14C]ochratoxin A uptake at 22 °C and causes a concomitant mitochondrial swelling yet is not incorporated into the matrix space. Thus, the saturable uptake of ochratoxin A is accompanied by a decrease in the energy state and inhibition of Pi transport, which results in deteriorative changes of the mitochondria, as evidenced by large-amplitude swelling.  相似文献   

10.
The effect of pH changes on Ca2+ transport by isolated heart mitochondria was measured. Two components of Ca2+ transport were identified, an accumulation dependent on mitochondrial respiration and a Na+-dependent efflux. A decrease of pH over the range 7.7-6.7 reduced the initial rate and the total amount of respiration dependent Ca2+ accumulation. At pH 7.2 the [Na+] required to activate half-maximal efflux, k1/2, was 7.5 +/- 1.1 mM. Decreasing the pH over the range 7.7 to 6.9 increased the k1/2 from 3.6 to 11.6. The effect of acidosis was more profound on the respiration dependent Ca2+ uptake than the Na+-dependent efflux.  相似文献   

11.
12.
Calcium depletion of the endoplasmic reticulum (ER) induces oligomerisation, puncta formation and translocation of the ER Ca2+ sensor proteins, STIM1 and -2 into plasma membrane (PM)-adjacent regions of the ER, where they activate the Orai1, -2 or -3 proteins present in the opposing PM. These proteins form ion channels through which store-operated Ca2+ influx (SOC) occurs. Calcium ions exert negative feed-back on SOC. Here we examined whether subplasmalemmal mitochondria, which reduce this feed-back by Ca2+ uptake, are located within or out of the high-Ca2+ microdomains (HCMDs) formed between the ER and plasmalemmal Orai1 channels. For this purpose, COS-7 cells were cotransfected with Orai1, STIM1 labelled with YFP or mRFP and the mitochondrially targeted Ca2+ sensitive fluorescent protein inverse-Pericam. Depletion of ER Ca2+ with ATP + thapsigargin (in Ca2+-free medium) induced the appearance of STIM1 puncta in the ≤100 nm wide subplasmalemmal space, as examined with TIRF. Mitochondria were located either in the gaps between STIM1-tagged puncta or in remote, STIM1-free regions. After addition of Ca2+ mitochondrial Ca2+ concentration increased irrespective of the mitochondrion–STIM1 distance. These observations indicate that mitochondria are exposed to Ca2+ diffused laterally from the HCMDs formed between the PM and the subplasmalemmal ER.  相似文献   

13.
Uptake of arsenite by rat liver mitochondria is energy-dependent, as shown by comparing values without and with either uncoupling agent or respiratory inhibitor present. The uptake is inhibited by mersalyl and N-ethylmaleimide, which can be used as 'stopping' agents to obtain uptake kinetics. At 20 degrees C the process is nearly complete in 1 min. The relation between the quantity in the energized mitochondria and the applied concentration corresponds to at least two different modes of binding of the arsenite. Competition occurs between arsenite and other anions (for example, phosphate) for intramitochondrial accumulation.  相似文献   

14.
15.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

16.
17.
The rate, extent, and efficiency of the energy-dependent contraction of heart mitochondria swollen in Na+ or K+ nitrate are all strongly activated by nigericin, an antibiotic which is known to support cation/H+ exchange in natural and model membranes. In the absence of nigericin, the cation selectivity sequence of energy-dependent contraction (Na+>Li+>K+>choline+) is identical to that of passive swelling in acetate salts, a reaction which is presumed to be dependent on an endogenous cation/H+ exchanger. These results strongly favor an osmotic mechanism for energy-dependent contraction which depends on electrogenic H+ ejection, H+/cation exchange, and electrophoretic anion efflux.  相似文献   

18.
The requirement of actual splitting of ATP for endocytosis in erythrocyte ghosts has been confirmed by use of the ATP analog, 5'-adenylylimidodiphosphate, (AMP-P(NH)P). This compound, in which the oxygen connecting the beta and gamma phosphorus atoms was replaced by an NH group, did not cause endocytosis nor was it a substrate for ATPase activity. AMP-P(NH)P was a competitive inhibitor both for the endocytosis and the Mg2+-ATPase activities. The K1 of AMP-P(NH)P for Mg2+ ATPase activity was 2.0 - 10-4 M and, while the Km of ATP for this activity was also 2.0 - 10-4 M indicating nearly identical affinities of ATP and AMP-P(NH)P for the active site. ADP, or ADP plus orthophosphate, did not cause endocytosis, showing that endocytosis was not due to binding of the products of ATP hydrolysis. Sodium or potassium ion or ouabain had no effect on endocytosis, which eliminated the possibility of involvement of the Na+, K+ ATPase in the endocytosis process. Calcium could not be substituted for magnesium; rather it inhibited endocytosis at the concentration of 1 - 10-3 M. EGTA relieved the inhibitory effect of Ca, which indicated that the binding of calcium to the membrane was reversible. These experimental results reaffirm the conclusion that ATP must be split to engender endocytosis under these conditions. Some characteristic parameters of the hemoglobin-free porcine erythrocyte ghosts were studied in order to characterize the system more adequately.  相似文献   

19.
The paper analyzes the factors affecting the H+-K+ exchange catalyzed by rat liver mitochondria depleted of endogenous Mg2+ by treatment with the ionophore A23187. The exchange has been monitored as the rate of K+ efflux following addition of A23187 in low-K+ media. (1) The H+-K+ exchange is abolished by uncouplers and respiratory inhibitors. The inhibition is not related to the depression of delta pH, whereas a dependence is found on the magnitude of the transmembrane electrical potential, delta psi. Maximal rate of K+ efflux is observed at 180-190 mV, whereas K+ efflux is inhibited below 140-150 mV. (2) Activation of H+-K+ exchange leads to depression of delta pH but not of delta psi. Respiration is only slightly stimulated by the onset of H+-K+ exchange in the absence of valinomycin. These findings indicate that the exchange is electroneutral, and that the delta psi control presumably involves conformational changes of the carrier. (3) Incubation in hypotonic media at pH 7.4 or in isotonic media at alkaline pH results in a marked activation of the rate of H+-K+ exchange, while leaving unaffected the level of Mg2+ depletion. This type of activation results in partial 'uncoupling' from the delta psi control, suggesting that membrane stretching and alkaline pH induce conformational changes on the exchange carrier equivalent to those induced by high delta psi. (4) The available evidence suggests that the activity of the H+-K+ exchanger is modulated by the electrical field across the inner mitochondrial membrane.  相似文献   

20.
Mitochondria contain a latent K+/H+ antiporter that is activated by Mg2+-depletion and shows optimal activity in alkaline, hypotonic suspending media. This K+/H+ antiport activity appears responsible for a respiration-dependent extrusion of endogenous K+, for passive swelling in K+ acetate and other media, for a passive exchange of matrix42K+ against external K+, Na+, or Li+, and for the respiration-dependent ion extrusion and osmotic contraction of mitochondria swollen passively in K+ nitrate. K+/H+ antiport is inhibited by quinine and by dicyclohexylcarbodiimide when this reagent is reacted with Mg2+-depleted mitochondria. There is good suggestive evidence that the K+/H+ antiport may serve as the endogenous K+-extruding device of the mitochondrion. There is also considerable experimental support for the concept that the K+/H+ antiport is regulated to prevent futile influx-efflux cycling of K+. However, it is not yet clear whether such regulation depends on matrix free Mg2+, on membrane conformational changes, or other as yet unknown factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号