首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  To explain the role of Saccharomyces cerevisiae and Saccharomyces uvarum strains (formerly Saccharomyces bayanus var. uvarum ) in wine fermentation.
Methods and Results:  Indigenous Saccharomyces spp. yeasts were isolated from Amarone wine (Italy) and analysed. Genotypes were correlated to phenotypes: Melibiose and Melibiose+ strains displayed a karyotype characterized by three and two bands between 225 and 365 kb, respectively. Two strains were identified by karyotype analysis (one as S. cerevisiae and the other as S. uvarum ). The technological characterization of these two strains was conducted by microvinifications of Amarone wine. Wines differed by the contents of ethanol, residual sugars, acetic acid, glycerol, total polysaccharides, ethyl acetate, 2-phenylethanol and anthocyanins. Esterase and β-glucosidase activities were assayed on whole cells during fermentation at 13° and 20°C. Saccharomyces uvarum displayed higher esterase activity at 13°C, while S. cerevisiae displayed higher β-glucosidase activity at both temperatures.
Conclusions:  The strains differed by important technological and qualitative traits affecting the fermentation kinetics and important aroma components of the wine.
Significance and Impact of the Study:  The contribution of indigenous strains of S. cerevisiae and S. uvarum to wine fermentation was ascertained under specific winemaking conditions. The use of these strains as starters in a winemaking process could differently modulate the wine sensory characteristics.  相似文献   

2.
To evaluate the influence of the genomic properties of yeasts on the formation of wine flavour, genotypic diversity among natural Saccharomyces cerevisiae strains originating from grapes collected in four localities of three Austrian vine-growing areas (Thermenregion: locations Perchtoldsdorf and Pfaffst?tten, Neusiedlersee-Hügelland: location Eisenstadt, Neusiedlersee: location Halbturn) was investigated and the aroma compounds produced during fermentation of the grape must of 'Grüner Veltliner' were identified. Amplified fragment length polymorphism analysis (AFLP) showed that the yeast strains cluster in four groups corresponding to their geographical origin. The genotypic analysis and sequencing of the D1/D2 domain of 26S rRNA encoding gene and ITS1/ITS2 regions indicated that the Perchtoldsdorf strains were putative interspecies hybrids between S. cerevisiae and Saccharomyces kudriavzevii. Analysis of the aroma compounds by GS/MS indicated a region-specific influence of the yeasts on the chemical composition of the wines. The aroma compound profiles generated by the Perchtoldsdorf strains were more related to those produced by the Pfaffst?tten strains than by the Eisenstadt and Halbturn strains. Similar to the Pfaffst?tten yeasts, the putative hybrid strains were good ester producers, suggesting that they may influence the wine quality favourably.  相似文献   

3.
Aim: To examine the growth and survival of Williopsis saturnus strains along with wine yeast Saccharomyces cerevisiae in grape must. Methods and Results: For this study, fermentations were performed in sterilized grape must at 18°C. Inoculum level was 5 × 106 cells per ml for each yeast. The results showed that W. saturnus yeasts exhibited slight growth and survival depending on the strain, but they died off by day 5. Saccharomyces cerevisiae, however, dominated the fermentation, reaching the population of about 8 log CFU ml?1. It was observed that ethanol formation was not affected. The concentrations of acetic acid, ethyl acetate and isoamyl acetate were found higher in mixed culture experiments compared to control fermentation. The results also revealed that higher alcohols production was unaffected in general. Conclusion: Fermentations did not form undesirable concentrations of flavour compounds, but production of higher levels of acetic acid in mixed culture fermentations may unfavour the usage of W. saturnus in wine making. Significance and Impact of the Study: This study provides information on the behaviour of W. saturnus together with S. cerevisiae during the alcoholic fermentation.  相似文献   

4.
De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts   总被引:1,自引:0,他引:1  
This paper reports the production of monoterpenes, which elicit a floral aroma in wine, by strains of the yeast Saccharomyces cerevisiae. Terpenes, which are typical components of the essential oils of flowers and fruits, are also present as free and glycosylated conjugates amongst the secondary metabolites of certain wine grape varieties of Vitis vinifera. Hence, when these compounds are present in wine they are considered to originate from grape and not fermentation. However, the biosynthesis of monoterpenes by S. cerevisiae in the absence of grape derived precursors is shown here to be of de novo origin in wine yeast strains. Higher concentration of assimilable nitrogen increased accumulation of linalool and citronellol. Microaerobic compared with anaerobic conditions favored terpene accumulation in the ferment. The amount of linalool produced by some strains of S. cerevisiae could be of sensory importance in wine production. These unexpected results are discussed in relation to the known sterol biosynthetic pathway and to an alternative pathway for terpene biosynthesis not previously described in yeast.  相似文献   

5.
采用Interdelta指纹图谱分析, 对分离自宁夏地区赤霞珠葡萄自然发酵过程中的45个酿酒酵母单菌落进行菌株区分, 研究发酵过程中酿酒酵母菌株的变化, 为发酵的有效控制及选育优良酿酒酵母菌株提供依据。结果发现, 本研究分离到的45个酿酒酵母单菌落中, 产生5种指纹图谱, 代表5种不同的基因型, 基因型I-V分别占所分离单菌落的71%、13%、9%、5.0%、2.0%, 基因型I是发酵过程中的优势菌株。本研究中, 二氧化硫处理影响自然发酵过程中酿酒酵母菌株的类型、数目及比例, 但其影响不是很大。  相似文献   

6.
AIMS: To investigate the influence of a specific ecological niche, the wine grape, on the survival and development of Saccharomyces cerevisiae. METHODS AND RESULTS: A strain with a rare phenotype was sprayed onto the grape surfaces and monitored through two vintages using a specific indicative medium and analysing the internal transcribed spacer regions in the 5.8S rDNA. During the ripening process, there was a progressive colonization of the surface of the undamaged and damaged grapes by epiphytic yeasts, up to the time of harvest. The damaged wine grapes showed a much greater epiphytic yeast population. However, the inoculated S. cerevisiae strain showed a scarce persistence on both undamaged and damaged wine grapes, and the damaged grapes did not appear to improve the grape surface colonization of this strain. CONCLUSIONS: Results indicated that wine grape is not a favourable ecological niche for the development and colonization of S. cerevisiae species. SIGNIFICANCE AND IMPACT OF THE STUDY: Results of this work are further evidence that S. cerevisiae is not specifically associated with natural environments such as damaged and undamaged wine grapes.  相似文献   

7.
AIMS: Isolation and characterization of indigenous Saccharomyces cerevisiae strains from 12 grape varieties grown in an experimental vineyard of Apulia. METHODS AND RESULTS: Thirty to 40 colonies from each of the 12 fermentations were obtained at the end stage of spontaneous fermentation. By using morphological and physiological methods and by the PCR analysis of internal transcribed ITS1-5,8S-ITS2, the isolates belonging to Saccharomyces genus were identified. These isolates were further characterized by amplification with S. cerevisiae species- and delta element-specific primers, thus allowing the identification of S. cerevisiae strains selected from each of the 12 fermentations. By means of RFLP analysis of mtDNA, each S. cerevisiae population isolated from a single fermentation appeared to constitute a genetically homogenous group. The comparison of the 12 cultivar-specific mtDNA RFLP patterns, allowed classifying the 12 S. cerevisiae populations into three genetically homogenous groups. The isolated strains fermented vigorously in synthetic and grape juice medium and showed high alcohol and sulphur dioxide (SO(2)) resistance and low hydrogen sulphite (H(2)S) production. CONCLUSIONS: The molecular analysis, in conjunction with the traditional morphological and physiological methods, was useful in discriminating at strain level the indigenous population of S. cerevisiae present in a vineyard of Apulia. The dominant S. cerevisiae strains identified in the 12 fermented musts showed potentially important oenological characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of natural S. cerevisiae strains from several typical Italian grapes grown in a restricted experimental vineyard is an important step towards the preservation and exploitation of yeast biodiversity of Apulia, a relevant wine-producing region. The close relationship between the S. cerevisiae strains from different grapes grown in the same vineyard indicated that the occurrence of native strains is representative of the area rather than of the variety of grapes.  相似文献   

8.
9.
A new primer pair (delta12-delta21) for polymerase chain reaction-based yeast typing was designed using the yeast genome sequence. The specificity of this primer pair was checked by the comparison of the electrophoresis pattern with a virtual profile calculated from Blast data. The analysis of 53 commercial and laboratory Saccharomyces cerevisiae yeast strains showed a clear improvement of interdelta analysis using the newly designed primers.  相似文献   

10.
The effect of pyrimethanil on the growth of wine yeasts   总被引:1,自引:0,他引:1  
Aims:  The toxicity of the fungicide pyrimethanil on the growth of wine yeasts was evaluated using in vivo and in vitro experimentation.
Methods and Results:  The effect of pyrimethanil in the must was studied during the spontaneous wine fermentation of three consecutive vintages and by the cultivation of Hanseniaspora uvarum and Saccharomyces cerevisiae yeasts in a liquid medium. The residues of the fungicide were measured using gas chromatography-mass spectrometry system and the sugar concentration in the must using HPLC-RI. Molecular and standard methods were used for identifying the yeast species. Although the pyrimethanil residues in grapes were below the maximum residue limits, they significantly affected the reduced utilization of sugars in the first days of fermentation. Its residues controlled the growth of H. uvarum during the fermentation and during in vitro cultivation as well.
Conclusions:  The fungicide pyrimethanil had an effect on the course and successful conclusion of spontaneous wine fermentation that was correlated with the initial concentration of yeasts in the must.
Significance and Impact of the Study:  The impact of pyrimethanil on the indigenous mixed yeast flora in fermenting must was investigated for the first time. The results showed that its residues might play an important role in the growth and succession of yeast during spontaneous wine fermentation.  相似文献   

11.
AIMS: The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non-Saccharomyces yeasts in wine-producing areas in Chile. METHODS AND RESULTS: Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous manner, whereas in the other the musts are inoculated with commercial yeasts. The isolated yeasts were identified by the internal transcribed (ITS)/restriction fragment length polymorphism technique. In the industrial production area less variability of yeast genera was observed as compared with the traditional area, an observation that is greatest at the end of the fermentation. Furthermore, a study of the production of extracellular enzymes was done. The majority of the yeasts showed at least one of the activities assayed with the exception of beta-glycosidase. CONCLUSION: The results suggest that in the industrialized area the diversity of yeasts is less in the traditional area. Likewise, the potentiality of the non-Saccharomyces yeasts as enzyme producers with industrial interest has been confirmed. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the negative effect of the use of monocultures over the biodiversity of yeasts in wine-producing regions.  相似文献   

12.
The PGU1 gene encodes an endo-polygalacturonase enzyme in Saccharomyces cerevisiae. The literature reports that most S. cerevisiae strains possess this gene, despite a wide range of enzyme activity levels. Nevertheless, a few wine strains lack the PGU1 gene. We investigated the PGU1 locus sequence in these strains. The results indicated that the gene had been replaced by a partial Ty mobile element, whereas the gene promoter was still at the expected location. As all the strains lacking the PGU1 gene experienced the same phenomenon, it was tempting to hypothesize a common phylogenetic origin. However, fingerprints only allowed grouping of a few of them within one cluster.  相似文献   

13.
14.
Individual yeast strains belonging to the Saccharomyces sensu stricto complex were isolated from Amarone wine produced in four cellars of the Valpolicella area (Italy) and characterized by conventional physiological tests and by RAPD-PCR and mtDNA restriction assays. Thirteen out of 20 strains were classified as Saccharomyces cerevisiae (ex S. cerevisiae p.r. cerevisiae and p.r. bayanus) and the remaining as Saccharomyces bayanus (ex S. cerevisiae p.r. uvarum). RAPD-PCR method proved to be a fast and reliable tool for identification of Saccharomyces sensu stricto strains and also gave intraspecific differentiation. Restriction analysis of mtDNA permitted to distinguish S. cerevisiae and S. bayanus species and to discern polymorphism among S. cerevisiae isolates. The assessment of the phenotypic diversity within the isolates by gas-chromatographic analysis of secondary fermentation products was explored. Small quantities of isobutanol were produced by most of the strains and higher amounts by some S. cerevisiae strains with phenotypes Gal- and Mel-; all S. bayanus strains produced low amounts of amilyc alcohols. From this study it appears that each winery owns particular strains, with different genetic and biochemical characteristics, selected by specific environmental pressures during the Amarone winemaking process carried out at low temperature in presence of high sugar content.  相似文献   

15.
Mutants resistant to the amino acid analogues dl-thiaisoleucine, dl-4-azaleucine, 5,5,5-trifluoro-dl-leucine and l-O-methylthreonine, were isolated from Saccharomyces cerevisiae wine yeast strains. The fermentative production of secondary metabolites by the mutants was tested in grape must. Higher alcohols, acetaldehyde and acetic acid concentration varied depending on strain and analogue. Most of the mutants produced increased amounts of amyl alcohol. A remarkable variability in the level of n-propanol, isobutanol, acetaldehyde and acetic acid was observed. In practical application, the use of mutants resistant to amino acid analogues can improve the quality of wines by reducing or increasing the presence of some secondary compounds.  相似文献   

16.
AIM: To evaluate whether intraspecific diversity of Saccharomyces cerevisiae in wine fermentations is affected by initial assimilable-nitrogen content. METHODS AND RESULTS: Saccharomyces cerevisiae isolates from two spontaneous commercial wine fermentations started with adequate and inadequate nitrogen amounts were characterized by mitochondrial DNA restriction analysis. Several strains occurred in each fermentation, two strains, but not the same ones, being predominant at frequencies of about 30%. No significant differences were detected by comparing the biodiversity indices of the two fermentations. Cluster analysis demonstrated that the strain distribution was independent of nitrogen content, the two pairs of closely related dominant strains grouping into clusters at low similarity. CONCLUSIONS: The genetic variability of S. cerevisiae in wine fermentations seemed not to depend on the nitrogen availability in must. SIGNIFICANCE AND IMPACT OF THE STUDY: Nitrogen content did not affect the genetic diversity but may have induced a 'selection effect' on S. cerevisiae strains dominating wine fermentations, with possible consequences on wine properties.  相似文献   

17.
The use of commercial wine yeast strains as starters has grown extensively over the past two decades. In this study, a large-scale sampling plan was devised over a period of 3 years in three different vineyards in the south of France, to evaluate autochthonous wine yeast biodiversity in vineyards around wineries where active dry yeasts have been used as fermentation starters for more than 5 years. Seventy-two spontaneous fermentations were completed from a total of 106 grape samples, and 2160 colonies were isolated. Among these, 608 Saccharomyces strains were identified and 104 different chromosomal patterns found. The large majority of these (91) were found as unique patterns, indicating great biodiversity. There were differences in biodiversity according to the vineyard and year, showing that the biodiversity of Saccharomyces strains is influenced by climatic conditions and specific factors associated with the vineyards, such as age and size. Strains that were terroir yeast candidates were not found. The biodiversity of S. cerevisiae strains after harvest was similar to that in the early campaign; moreover, a temporal succession of S. cerevisiae strains is shown. This fact, together with the differences in biodiversity levels verifies that other factors were more important than commercial yeast utilization in the biodiversity of the vineyard.  相似文献   

18.
The total yield of ergosterol produced by the fermentation of the yeast Saccharomyces cerevisiae depends on the final amount of yeast biomass and the ergosterol content in the cells. At the same time ergosterol purity—defined as percentage of ergosterol in the total sterols in the yeast—is equally important for efficient downstream processing. This study investigated the development of both the ergosterol content and ergosterol purity in different physiological (metabolic) states of the microorganism S. cerevisiae with the aim of reaching maximal ergosterol productivity. To expose the yeast culture to different physiological states during fermentation an on‐line inference of the current physiological state of the culture was used. The results achieved made it possible to design a new production strategy, which consists of two preferable metabolic states, oxidative‐fermentative growth on glucose followed by oxidative growth on glucose and ethanol simultaneously. Experimental application of this strategy achieved a value of the total efficiency of ergosterol production (defined as product of ergosterol yield coefficient and volumetric productivity), 103.84 × 10?6 g L?1h?1, more than three times higher than with standard baker's yeast fed‐batch cultivations, which attained in average 32.14 × 10?6 g L?1h?1. At the same time the final content of ergosterol in dry biomass was 2.43%, with a purity 86%. These results make the product obtained by the proposed control strategy suitable for effective down‐stream processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:838–848, 2017  相似文献   

19.
AIMS: To study the addition of cellulose-based adjuvant as a resource to offset the negative effects produced by grape juice clarification during alcoholic fermentations. METHODS AND RESULTS: The effect of the addition of two kinds of inert cellulose substrates in white wine vinification was investigated in two different musts. In one of these musts, stuck fermentations were detected. One of the types of cellulose examined had a fining effect, which caused a decrease in the number of viable yeasts in the medium and altered the distribution and frequency of the clones, which performed the fermentation. The other cellulose substrate made the medium cloudier but did not alter the distribution of yeasts in comparison with the control. CONCLUSIONS: The behaviour of the inert cellulose substrates on vinification depends on its physical characteristics and its capacity for making the must cloudy. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of inert cellulose substrates in white wine vinification improves the fermentation process and the quality of wines obtained. This effect is more noticeable in difficult fermentations. One variety of cellulose showed an inhibitory effect on Torulaspora delbrueckii yeasts.  相似文献   

20.
Aims:  In this study we demonstrate the interference of yeast extract in enumeration of Saccharomyces cerevisiae using real-time PCR and develop a method for its removal from the media using ethidium monoazide (EMA).
Methods and Results:  Using real-time PCR and primers to S. cerevisiae we demonstrate the presence of yeast DNA in various media as well as the media impact on S. cerevisiae real-time PCR standard curves. By pretreatment with EMA, we were able to remove this interference.
Conclusions:  Saccharomyces cerevisiae DNA can be found in a number of common laboratory media and may impact the enumeration of this yeast by real-time PCR. However, pretreatment with EMA eliminates this concern.
Significance and Impact of the Study:  We have developed a method for removal of contaminating DNA in yeast growth media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号