首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To ascertain the efficacy of neutral electrolysed water (NEW) in reducing Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes on glass and stainless steel surfaces. Its effectiveness for that purpose is compared with that of a sodium hypochlorite (NaClO) solution with similar pH, oxidation-reduction potential (ORP) and active chlorine content. METHODS AND RESULTS: First, the bactericidal activity of NEW was evaluated over pure cultures (8.5 log CFU ml-1) of the abovementioned strains: all of them were reduced by more than 7 log CFU ml-1 within 5 min of exposure either to NEW (63 mg l-1 active chlorine) or to NaClO solution (62 mg l-1 active chlorine). Then, stainless steel and glass surfaces were inoculated with the same strains and rinsed for 1 min in either NEW, NaClO solution or deionized water (control). In the first two cases, the populations of all the strains decreased by more than 6 log CFU 50 cm-2. No significant difference (P相似文献   

2.
Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. marcescens. P. fragi and E. coli attached in very small numbers to the clear surfaces, making the effect of any adsorbed protein layer difficult to assess. Individual milk proteins alpha-casein, beta-casein, kappa-casein, and alpha-lactalbumin were also found to reduce the adhesion of S. aureus and L. monocytogenes. The adhesion of bacteria to samples treated with milk dilutions up to 0.001% was investigated. X-ray photoelectron spectroscopy was used to determine the proportion of nitrogen in the adsorbed films. Attached bacterial numbers were inversely related to the relative atomic percentage of nitrogen on the surface. A comparison of two types of stainless steel surface, a 2B and a no. 8 mirror finish, indicated that the difference in these levels of surface roughness did not greatly affect bacterial attachment, and reduction in adhesion to a milk-treated surface was still observed. Cross-linking of adsorbed proteins partially reversed the inhibition of bacterial attachment, indicating that protein chain mobility and steric exclusion may be important in this phenomenon.  相似文献   

3.
AIMS: The effect of laser (pulse repetition frequency, pulse energy and exposure time) and environmental parameters (pH, NaCl concentration and wet or dry samples) of Nd:YAG laser decontamination of stainless steel inoculated with Escherichia coli, Staphylococcus aureus and Listeria monocytogenes was investigated. METHODS AND RESULTS: Stainless steel discs were inoculated with the bacterial samples and exposed to laser energy densities to about 900 J cm(-2). These inactivation curves allowed selection of laser parameters for two-level multifactorial designed experiments, the results of which allowed comparisons to be made between effects of individual and combined parameters on the laser inactivation efficiency. Escherichia coli was inactivated most effectively as a wet film with L. monocytogenes and S. aureus showing similar response. For the multifactorial experiments all laser parameters were significant and were smallest for S. aureus as a wet film. CONCLUSIONS: pH and NaCl concentration had little effect on the efficacy of laser inactivation but dry or wet states and all laser parameters were significant. SIGNIFICANCE AND IMPACT OF THE STUDY: Such systems may prove to be applicable in industrial processes where stainless steel may be contaminated with acidic solutions or salt, e.g. in the food industry with laser inactivation seeming to be independent of these parameters. Parameters have been identified that allow optimization of the treatment process.  相似文献   

4.
We have reported previously that copper I and II ionic species, and superoxide but not Fenton reaction generated hydroxyl radicals, are important in the killing mechanism of pathogenic enterococci on copper surfaces. In this new work we determined if the mechanism was the same in non-pathogenic ancestral (K12) and laboratory (DH5α) strains, and a pathogenic strain (O157), of Escherichia coli. The pathogenic strain exhibited prolonged survival on stainless steel surfaces compared with the other E.?coli strains but all died within 10?min on copper surfaces using a 'dry' inoculum protocol (with approximately 10(7) cfu?cm(-2) ) to mimic dry touch contamination. We observed immediate cytoplasmic membrane depolarization, not seen with enterococci or methicillin resistant Staphylococcus aureus, and loss of outer membrane integrity, inhibition of respiration and in situ generation of reactive oxygen species on copper and copper alloy surfaces that did not occur on stainless steel. Chelation of copper (I) and (II) ionic species still had the most significant impact on bacterial survival but protection by d-mannitol suggests hydroxyl radicals are involved in the killing mechanism. We also observed a much slower rate of DNA destruction on copper surfaces compared with previous results for enterococci. This may be due to protection of the nucleic acid by the periplasm and the extensive cell aggregation that we observed on copper surfaces. Similar results were obtained for Salmonella species but partial quenching by d-mannitol suggests radicals other than hydroxyl may be involved. The results indicate that copper biocidal surfaces are effective for Gram-positive and Gram-negative bacteria but bacterial morphology affects the mechanism of toxicity. These surfaces could not only help to prevent infection spread but also prevent horizontal gene transmission which is responsible for the evolution of virulent toxin producing and antibiotic resistant bacteria.  相似文献   

5.
In this study a comparison was made of recovering bacteria from stainless steel, plastic, wood, agar and meat surfaces. Sampling was performed using the agar contact and swab methods. The results indicated that for a flat, firm surface the contact plate method was more suitable, considering both recovery and repeatability. Swabbing was, by contrast, better for flexible and uneven surfaces and for heavily contaminated surfaces. Bacteriological guidelines are suggested for the hygienic evaluation of surface contamination of meat carcasses and for working surfaces in meat processing plates.  相似文献   

6.
AKACID Plus, a novel polymeric guanidine with broad antimicrobial activity against multiantibiotic-resistant bacterial strains, was used in the present study as a room disinfectant. Disinfection of closed rooms experimentally contaminated with antibiotic-susceptible and multiresistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Escherichia coli was performed using AKACID Plus at concentrations of 0.1, 0.25, and 0.5% for 100 min. Bacterial suspensions were distributed on plastic and stainless steel plates and placed in a test room. Recovery of the test microorganisms was determined before nebulizing, 60 and 100 min after initiation, and 4 h after the end of room disinfection by a simple swab-rinse technique. The swab-rinse method demonstrated a dose- and time-dependent effectiveness of AKACID Plus in eradicating S. aureus, E. coli, and P. aeruginosa on plastic and stainless steel plates. Nebulized 0.5% AKACID Plus was successful in eliminating all hospital pathogens within 340 min. After the use of 0.25% AKACID Plus, MRSA was still detectable on microbial carrier plates. The test concentration of 0.1% AKACID Plus achieved a significant reduction of S. aureus and P. aeruginosa on plastic and stainless steel plates but was sufficient to eradicate only E. coli. These results suggest that nebulized AKACID Plus at a concentration of 0.5% is a potent substance for eradication of pathogenic organisms in the hospital setting.  相似文献   

7.

Aims

Pathogenic bacteria can spread between individuals or between food items via the surfaces they share. Limiting the survival of pathogens on surfaces, therefore, presents an opportunity to limit at least one route of how pathogens spread. In this study, we propose that a simple coating with the essential oil isoeugenol can be used to circumvent the problem of bacterial transfer via surfaces.

Methods and Results

Two commonly used materials, stainless steel and polyethylene, were coated by physical adsorption, and the coatings were characterized by Raman spectroscopy, atomic force microscopy and water contact angle measurements. We quantified and visualized the colonization of coated and uncoated surfaces by three bacteria: Staphylococcus aureus, Listeria monocytogenes and Pseudomonas fluorescens. No viable cells were detected on surfaces coated with isoeugenol.

Conclusions

The isoeugenol coating prepared with simple adsorption proved effective in preventing biofilm formation on stainless steel and polyethylene surfaces. The result was caused by the antibacterial effect of isoeugenol, as the coating did not diminish the adhesive properties of the surface.

Significance and Impact of the Study

Our study demonstrates that a simple isoeugenol coating can prevent biofilm formation of S. aureus, L. monocytogenes and P. fluorescens on two commonly used surfaces.  相似文献   

8.
目的:比较普通304医用不锈钢和304-Cu型医用抗菌不锈钢的体内抗细菌感染性能。方法:将两种不锈钢片涂布浓度为1×107cfu/mL的金黄色葡萄球菌培养24 h,植入SD大鼠胫腓骨肌袋内,继续饲养并在术前及术后第1、4、7、14天进行大体观察、植入部位细菌培养、白细胞计数、组织学观察等检测。结果:普通304不锈钢组术后中度化脓,检测到较多细菌,白细胞增多且有大量的炎症细胞出现;而304-Cu型抗菌不锈钢术后只有轻微化脓,检测到的细菌较少,白细胞数稍有增多但无统计学差异,炎症细胞少,感染程度轻。结论:与医用304不锈钢相比,304-Cu型抗菌不锈钢有较好的抗细菌性能,有一定的抗感染作用。  相似文献   

9.
Hospital acquired infections (HAI) are a major problem worldwide and controlling the spread of these infections within a hospital is a constant challenge. Recent studies have highlighted the antimicrobial properties of copper and its alloys against a range of different bacteria. The objective of this study was to evaluate the antimicrobial properties of copper compared to stainless steel against a range of clinically important pathogens. These pathogens consisted of five isolates of each of the following organisms; meticillin resistantStaphylococcus aureus (MRSA),Pseudomonas aeruginosa, Escherichia coli, vancomycin-resistant Enterococci (VRE) and Panton-Valentine Leukocidin positive community acquired-MSSA (PVL positive CA-MSSA). MRSA,P. aeruginosa, E. coli, and CA-MSSA isolates were not detectable after a median time of 60 minutes. No detectable levels for all VRE isolates were determined after a median time of 40 minutes. However, for all isolates tested the stainless steel had no effect on the survival of the bacteria and levels remained similar to the time zero count. The results of this study demonstrate that copper has a strong antimicrobial effect against a range of clinically important pathogens compared to stainless steel and potentially could be employed to aid the control HAI.  相似文献   

10.
Hot-water extracts prepared from nine out of 12 samples of dried edible Laminaria reduced the viable numbers of Aggregatibacter actinomycetemcomitans, Staphylococcus aureus, and Esherichia coli below the detection limit after incubation for 5 min when combined with lactoperoxidase, glucose oxidase, and glucose. Some extracts showed higher bactericidal activity and a higher OI(-) concentration in the assay mixture after ultrafiltration.  相似文献   

11.
The adsorption of proteins at solid–liquid interfaces is important in biosensor and biomaterial applications. Marine mussels affix themselves to surfaces using a highly cross‐linked, protein‐based adhesive containing a high proportion of L‐3,4‐dihydroxyphenylalanine (DOPA) residues. In this work, the effect of DOPA residues on protein adhesion on stainless steel surfaces was studied using a quartz crystal microbalance with dissipation system. The adsorption of two repetitive peptide motifs, KGYKYYGGSS and KGYKYY, from the mussel Mytilus edulis foot protein 5 on stainless steel was studied before and after chemo‐enzymatic modification of tyrosine residues to DOPA using mushroom tyrosinase. Conversion from tyrosine to DOPA, evaluated by HPLC, was in the range 70–99%. DOPA‐modified sequences showed fourfold greater adhesion than unmodified M. edulis foot protein 5 motifs. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Staphylococcus aureus (NCTC 6571; Oxford strain) on stainless steel discs was exposed to microwave radiation at 2450 MHz and up to 800 W. Cell viability was reduced as the exposure time increased, with complete bacterial inactivation at 110 s, attaining a temperature of 61.4 degrees C. The low rate of temperature rise, RT, of the bacterial suspension as compared with sterile distilled water or nutrient broth suggests a significant influence of the microwave sterilization efficacy on the thermal properties of the micro-organisms. The heat transfer kinetics of thermal microwave irradiation suggest that the micro-organism has a power density at least 51-fold more than its surrounding liquid suspension. When the inoculum on the stainless steel disc was subjected to microwave radiation, heat conduction from the stainless steel to the inoculum was the cause of bacteriostasis with power absorbed at 23.8 W for stainless steel and 0.16 W for the bacteria-liquid medium. This report shows that the microwave killing pattern of Staph. aureus on stainless steel was mainly due to heat transfer from the stainless steel substrate and very little direct energy was absorbed from the microwaves.  相似文献   

13.
AIMS: The objectives of this study were to evaluate the role of curli in assisting the cells of enterohaemorrhagic Escherichia coli (EHEC) in attaching to abiotic surfaces and to determine the influence of cell-surface contact time on the efficiency of the attachment. METHODS AND RESULTS: Three pairs of EHEC cultures, each with a curli-expressing and a noncurli-expressing variant (O111:H- 7-57C+ and O157:H7 5-9C-, O157:H7 5-11C+ and 5-11C-, as well as O103:H2 7-52C+ and 7-52C-), were allowed to interact with polystyrene, glass, stainless steel and rubber surfaces at 28 degrees C for 24 h (short-term attachment) or 7 days (long-term attachment). The quantities of the cells that attached to the surfaces were measured daily in the long-term attachment study, and in 4 h intervals in the short-term attachment study. Quantification of the cells that attached to the surfaces was accomplished with a crystal violet binding assay. The results of the long-term attachment study indicated that 7-57C+ attached to the polystyrene and glass surfaces more efficiently (P < 0.05) than did 5-9C-. The curli-expressing variant of 5-11 possessed a better ability to adhere to the polystyrene and glass surfaces than did its noncurli-expressing counterpart (P < 0.05). The differences in attachment between 7-52C+ and 7-52C- on polystyrene and stainless steel surfaces were statistically significant (P < 0.05). However, the attachment of the pair on the glass surfaces was statistically insignificant (P > 0.05). In addition, the two members of all three EHEC pairs attached equally well to rubber surfaces (P > 0.05). In the short-term attachment study, only the pair of 7-52 attached differently on glass and stainless steel surfaces (P < 0.05). CONCLUSIONS: These results suggest that curli could be an important cell surface component to mediate the attachment of some EHEC cells to certain abiotic surfaces. Cell-surface contact time could have a significant influence on EHEC attachment to abiotic surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: The study signifies a possible role of curli in assisting the cells of EHEC in attaching to food-contact surfaces. It underlines the importance of cleaning and sanitizing food-contact surfaces regularly and thoroughly, and of identifying chemical agents that can effectively remove the attached EHEC cells from these surfaces.  相似文献   

14.
Cattle and sheep are major reservoirs of Escherichia coli O157 and consequently these and certain other farm animals can pass out large numbers of this organism in their faeces. Thus the ability of the organism to survive in faeces, on pastureland and in associated water systems has important implications for its spread to crops by direct application of manure, by irrigation with infected water or directly to man by contact with animals or contaminated soil. Model systems were used to determine the persistence of the organism in river water, cattle faeces, soil cores and on stainless steel work surfaces. Survival of the organism was found to be greatest in soil cores containing rooted grass. Under these conditions viable numbers were shown to decline from approximately 10(8) g(-1) soil to between 10(6) and 10(7) g(-1) soil after 130 d. When the organism was inoculated into cattle faeces it remained detectable at high levels for more than 50 d. In contrast the organism survived much less readily in cattle slurry and river water where it fell in numbers from more than 10(6) ml(-1) to undetectable levels in 10 and 27 d, respectively. The survival of E. coli O157 was also investigated on stainless steel surfaces, where as air-dried deposits, it was shown to survive for periods in excess of 60 d. It was most stable at chill temperatures (4 degrees C) and viability was only partially reduced at 18 degrees C. In addition to stainless steel, the organism was shown to survive for extended periods on domestic (plastic) cutting boards, both at room and chill temperatures. Sanitizing agents, such as hypochlorites and a compound comprising both cationic and anionic-based active ingredients were found to be effective in killing various VTEC on stainless steel surfaces.  相似文献   

15.
AIMS: The performance of three scanning CO(2) laser inactivation systems was assessed and included: a gantry system, a rapidly rotating mirror and a low-power hybrid system combining an oscillating mirror and rotary motion of the sample. METHODS AND RESULTS: Escherichia coli and Staphylococcus aureus were the target organisms on stainless steel, nutrient agar or moist collagen film and the laser power was varied from 2 to 1060 W (two laser sources). In general, a threshold energy density was identified, above which no inactivation was observed because the scanning velocity was too high (10 cm s(-1) for stainless steel, 660 W). Reducing the velocity increased the inactivation process until complete inactivation was observed at 1.3 cm s(-1) (E. coli, approximately 10(6) CFU per sample) and 0.82 cm s(-1) (S. aureus, approximately 10(8) CFU per sample); consequently, S. aureus organisms showed a greater resistance to laser irradiation. For the nutrient agar and collagen samples, the averages of the width of clearing were measured as a function of the translation velocity and the rates of inactivation (I(R), cm(2) s(-1)) were found; an optimum velocity was observed that produced the maximum rate of inactivation. At a laser power of 1060 W, the maximum value of I(R) was 140 cm(2) s(-1) ( approximately 10(7) CFU cm(-2)) for S. aureus on collagen and slightly less on nutrient agar (114 cm(2) s(-1), estimated from a best-fit polynomial, r(2) = 0.98). CONCLUSIONS: A comparison of the low- and high-power lasers produced values of 0.09 cm(2) s(-1) W(-1) (i.e. I(R) per Watt delivered) for S. aureus on nutrient agar with the low-power laser at 13 W and on collagen 0.13 cm(2) s(-1) W(-1) for 1060 W. The rate of inactivation was found to be a function of the laser power, translation velocity and properties of the substrate media. The three laser inactivation systems successfully demonstrated the potential speed, efficiency and application of such systems. SIGNIFICANCE AND IMPACT OF THE STUDY: Laser scanning systems offer the potential for rapid and efficient inactivation of surfaces, eliminating the need for chemical treatment.  相似文献   

16.
The disinfecting capacity of eight commercial chemical products was evaluated by the use--dilution method given by the Associated of Official Analytical Chemists (AOAC) on three types of surface material (steel, aluminum, and plastic). For most products tested the limit concentration was 10 times higher for disinfecting aluminum and plastic surfaces than stainless steel. As observed on the scanning electron microscope, the number of bacteria deposited on the surface and the production of extracellular material on polypropylene by Pseudomonas aeruginosa ATCC 15442 would explain the observed differences. The applicability of the AOAC method or other techniques for the evaluation of the disinfecting capacity on different surfaces is discussed.  相似文献   

17.
The quantity of microorganisms that may be transferred to a food that comes into contact with a contaminated surface depends on the density of microorganisms on the surface and on the attachment strengths of the microorganisms on the materials. We made repeated contacts between pieces of meat and various surfaces (stainless steel and conveyor belt materials [polyvinyl chloride and polyurethane]), which were conditioned with meat exudate and then were contaminated with Listeria monocytogenes, Staphylococcus sciuri, Pseudomonas putida, or Comamonas sp. Attachment strengths were assessed by the slopes of the two-phase curves obtained by plotting the logarithm of the number of microorganisms transferred against the order number of the contact. These curves were also used to estimate the microbial population on the surface by using the equation of A. Veulemans, E. Jacqmain, and D. Jacqmain (Rev. Ferment. Ind. Aliment. 25:58-65, 1970). The biofilms were characterized according to their physicochemical surface properties and structures. Their exopolysaccharide-producing capacities were assessed from biofilms grown on polystyrene. The L. monocytogenes biofilms attached more strongly to polymers than did the other strains, and attachment strength proved to be weaker on stainless steel than on the two polymers. However, in most cases, it was the population of the biofilms that had the strongest influence on the total number of CFU detached. Although attachment strengths were weaker on stainless steel, this material, carrying a smaller population of bacteria, had a weaker contaminating capacity. In most cases the equation of Veulemans et al. revealed more bacteria than did swabbing the biofilms, and it provided a better assessment of the contaminating potential of the polymeric materials studied here.  相似文献   

18.
Multifactored logistic models were developed for chlorpyrifos and cyfluthrin formulations based on mortality data from laboratory studies with the German cockroach, Blattella germanica (L.). Insecticides were applied to stainless steel surfaces and aged at three different temperatures (23, 30, and 37 degrees C) and two levels of relative humidity (40 and 70%). After the insecticides dried, the treated panels were placed opposite plywood panels to simulate a crack and crevice application. At appropriate aging times, treated panels were removed from environmental chambers for bioassay. The combined effects of high temperature, high humidity, and aging of residues caused the greatest decline in cockroach mortality for chlorpyrifos. Increasing temperature and aging of residues resulted in decreased cockroach mortality for cyfluthrin formulations; however, mortality was greater than 87% for all formulations through 84 d. Information from this study can be incorporated into integrated pest management programs for German cockroaches.  相似文献   

19.
An impedimetric evaluation of disinfectant efficacy has shown that biofilms of Staphylococcus aureus, Escherichia coli, Salmonella enteritidis and Listeria mono-cytogenes attached to polyvinyl chloride (PVC), Teflon, Plexiglass, wood, rubber and stainless steel are more resistant than the same bacteria in suspension. Based on the activity against the test-organisms after 1, 3 and 5 min with exposures to 0.5, 1 and 2% of each disinfectant, the resistance towards disinfection was related to the type of hard-surface to which biofilms were attached.  相似文献   

20.
The complete amino acid sequence of adenylate kinase (MgATP + AMP in equilibrium MgADP + ADP) from Paracoccus denitrificans has been determined. 1. The S-[14C]carboxymethylated protein was cleaved with clostripain, cyanogen bromide and endoproteinase Lys-C; 18, 9 and 6 fragments, respectively, were analyzed. Some of these peptides were further degraded by trypsin, Staphylococcus aureus V8 protease and carboxypeptidases A and B. The fragments were separated by HPLC and sequenced with a gas-phase sequencer. 2. Sequencing the whole unblocked protein yielded the N-terminal region. The C-terminal residues were obtained by carboxypeptidase-Y digestion in agreement with the sequence of tryptic and cyanogen bromide peptides. 3. The final sequence shows 217 amino acids with Mr = 23,609 and contains one free cysteine and a disulfide bond. 4. The comparison of the P. denitrificans sequence with other known adenylate kinases shows highest similarity with the structurally known Escherichia coli enzyme (47%). The only and catalytically relevant His in the paracoccal enzyme is close to the site of binding of adenosine(5')pentaphospho(5')adenosine to E. coli adenylate kinase. The disulfide bridge is located in the 30-residue segment, which is indicative of the large variants and is absent in cytosolic adenylate kinase. The similarity to the mitochondrial intermembrane-space and matrix adenylate kinase isoenzymes is only 40% and 30%, respectively, while 39% of redidues are identical to those of yeast cytosolic adenylate kinase. Therefore, adenylate kinases do not support the hypothesis of a close relationship between Paracoccus and mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号