首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statistical shape models (SSM) of bony surfaces have been widely proposed in orthopedics, especially for anatomical bone modeling, joint kinematic analysis, staging of morphological abnormality, and pre- and intra-operative shape reconstruction. In the SSM computation, reference shape selection, shape registration and point correspondence computation are fundamental aspects determining the quality (generality, specificity and compactness) of the SSM. Such procedures can be made critical by the presence of large morphological dissimilarities within the surfaces, not only because of anthropometrical variability but also mainly due to pathological abnormalities. In this work, we proposed a SW pipeline for SSM construction based on pair-wise (PW) shape registration, which requires the a-priori selection of the reference shape, and on a custom iterative point correspondence algorithm. We addressed large morphological deformations in five different bony surface sets, namely proximal femur, distal femur, patella, proximal fibula and proximal tibia, extracted from a retrospective patient dataset. The technique was compared to a method from the literature, based on group-wise (GW) shape registration. As a main finding, the proposed technique provided generalization and specificity median errors, for all the five bony regions, lower than 2?mm. The comparative analysis provided basically similar results. Particularly, for the distal femur that was the shape affected by the largest pathological deformations, the differences in generalization, specificity and compactness were lower than 0.5?mm, 0.5?mm, and 1%, respectively. We can argue the proposed pipeline, along with the robust correspondence algorithm, is able to compute high-quality SSM of bony shapes, even affected by large morphological variability.  相似文献   

2.
PurposeTo report the commissioning and validation of deformable image registration(DIR) software for adaptive contouring.MethodsDIR (SmartAdapt®v13.6) was validated using two methods namely contour propagation accuracy and landmark tracking, using physical phantoms and clinical images of various disease sites. Five in-house made phantoms with various known deformations and a set of 10 virtual phantoms were used. Displacement in lateral, anterio-posterior (AP) and superior-inferior (SI) direction were evaluated for various organs and compared with the ground truth. Four clinical sites namely, brain (n = 5), HN (n = 9), cervix (n = 18) and prostate (n = 23) were used. Organs were manually delineated by a radiation oncologist, compared with the deformable image registration (DIR) generated contours. 3D slicer v4.5.0.1 was used to analyze Dice Similarity Co-efficient (DSC), shift in centre of mass (COM) and Hausdorff distances Hf95%/avg.ResultsMean (SD) DSC, Hf95% (mm), Hfavg (mm) and COM of all the phantoms 1–5 were 0.84 (0.2) mm, 5.1 (7.4) mm, 1.6 (2.2) mm, and 1.6 (0.2) mm respectively. Phantom-5 had the largest deformation as compared to phantoms 1–4, and hence had suboptimal indices. The virtual phantom resulted in consistent results for all the ROIs investigated. Contours propagated for brain patients were better with a high DSC score (0.91 (0.04)) as compared to other sites (HN: 0.84, prostate: 0.81 and cervix 0.77). A similar trend was seen in other indices too. The accuracy of propagated contours is limited for complex deformations that include large volume and shape change of bladder and rectum respectively. Visual validation of the propagated contours is recommended for clinical implementation.ConclusionThe DIR algorithm was commissioned and validated for adaptive contouring.  相似文献   

3.
Measurement of static alignment of articulating joints is of clinical benefit and can be determined using image-based registration. We propose a method that could potentially improve the outcome of image-based registration by using initial manual registration. Magnetic resonance images of two wrist specimens were acquired in the relaxed position and during simulated grasp. Transformations were determined from voxel-based image registration between the two volumes. The volumes were manually aligned to match as closely as possible before auto-registration, from which standard transformations were obtained. Then, translation/rotation perturbations were applied to the manual registration to obtain altered initial positions, from which altered auto-registration transformations were obtained. Models of the radiolunate joint were also constructed from the images to simulate joint contact mechanics. We compared the sensitivity of transformations (translations and rotations) and contact mechanics to altering the initial registration condition from the defined standard. We observed that with increasing perturbation, transformation errors appeared to increase and values for contact force and contact area appeared to decrease. Based on these preliminary findings, it appears that the final registration outcome is sensitive to the initial registration.  相似文献   

4.
Optical-CT dual-modality imaging requires the mapping between 2D fluorescence images and 3D body surface light flux. In this paper, we proposed an optical-CT dual-modality image mapping algorithm based on the Digitally Reconstructed Radiography (DRR) registration. In the process of registration, a series of DRR images were computed from CT data using the ray casting algorithm. Then, the improved HMNI similarity strategy based on Hausdorff distance was used to complete the registration of the white-light optical images and DRR virtual images. According to the corresponding relationship obtained by the image registration and the Lambert’s cosine law based on the pin-hole imaging model, the 3D light intensity distribution on the surface of the object could be solved. The feasibility and effectiveness of the mapping algorithm are verified by the irregular phantom and mouse experiments.  相似文献   

5.
The purpose of this study was to develop a novel dynamic deformable thorax phantom for deformable image registration (DIR) quality assurance (QA) and to verify as a tool for commissioning and DIR QA.The phantom consists of a base phantom, an inner phantom, and a motor-derived piston. The base phantom is an acrylic cylinder phantom with a diameter of 180 mm. The inner phantom consists of deformable, 20 mm thick disk-shaped sponges. To evaluate the physical characteristics of the phantom, we evaluated its image quality and deformation. DIR accuracies were evaluated using the three types of commercially DIR software (MIM, RayStation, and Velocity AI) to test the feasibility of this phantom. We used different DIR parameters to test the impact of parameters on DIR accuracy in various phantom settings. To evaluate DIR accuracy, a target registration error (TRE) was calculated using the anatomical landmark points.The three locations (i.e., distal, middle, and proximal positions) had different displacement amounts. This result indicated that the inner phantom was not moved but deformed. In cases with different phantom settings and marker settings, the ranges of the average TRE were 0.63–15.60 mm (MIM). In cases with different DIR parameters settings, the ranges of the average TRE were as follows: 0.73–7.10 mm (MIM), 8.25–8.66 mm (RayStation), and 8.26–8.43 mm (Velocity). These results suggest that our phantom could evaluate the detailed DIR behaviors with TRE. Therefore, this is indicative of the potential usefulness of our phantom in DIR commissioning and QA.  相似文献   

6.
PurposeThe aim of this study is to present a short and comprehensive review of the methods of medical image registration, their conditions and applications in radiotherapy. A particular focus was placed on the methods of deformable image registration.MethodsTo structure and deepen the knowledge on medical image registration in radiotherapy, a medical literature analysis was made using the Google Scholar browser and the medical database of the PubMed library.ResultsChronological review of image registration methods in radiotherapy based on 34 selected articles. A particular attention was given to show: (i) potential regions of the application of different methods of registration, (ii) mathematical basis of the deformable methods and (iii) the methods of quality control for the registration process.ConclusionsThe primary aim of the medical image registration process is to connect the contents of images. What we want to achieve is a complementary or extended knowledge that can be used for more precise localisation of pathogenic lesions and continuous improvement of patient treatment. Therefore, the choice of imaging mode is dependent on the type of clinical study. It is impossible to visualise all anatomical details or functional changes using a single modality machine. Therefore, fusion of various modality images is of great clinical relevance. A natural problem in analysing the fusion of medical images is geographical errors related to displacement. The registered images are performed not at the same time and, very often, at different respiratory phases.  相似文献   

7.
在国际趋势的压力下,兼受跨太平洋伙伴关系协定(TPP)影响,我国实施药品数据保护制度已成大势所趋。鉴于药品数据保护与药品注册审批体系紧密相关,我国化学药注册分类改革后,药品数据保护对医药产业发展必然会带来不同影响。结合我国分类注册改革新标准,在理论上对数据保护制度实施效果进行研究,进而探讨新注册分类下数据保护的实施对1至4类药品及医药产业的影响。  相似文献   

8.
Biplane 2D-3D registration approaches have been used for measuring 3D, in vivo glenohumeral (GH) joint kinematics. Computed tomography (CT) has become the gold standard for reconstructing 3D bone models, as it provides high geometric accuracy and similar tissue contrast to video-radiography. Alternatively, magnetic resonance imaging (MRI) would not expose subjects to radiation and provides the ability to add cartilage and other soft tissues to the models. However, the accuracy of MRI-based 2D-3D registration for quantifying glenohumeral kinematics is unknown. We developed an automatic 2D-3D registration program that works with both CT- and MRI-based image volumes for quantifying joint motions. The purpose of this study was to use the proposed 2D-3D auto-registration algorithm to describe the humerus and scapula tracking accuracy of CT- and MRI-based registration relative to radiostereometric analysis (RSA) during dynamic biplanar video-radiography. The GH kinematic accuracy (RMS error) was 0.6–1.0 mm and 0.6–2.2° for the CT-based registration and 1.4–2.2 mm and 1.2–2.6° for MRI-based registration. Higher kinematic accuracy of CT-based registration was expected as MRI provides lower spatial resolution and bone contrast as compared to CT and suffers from spatial distortions. However, the MRI-based registration is within an acceptable accuracy for many clinical research questions.  相似文献   

9.
The aim of this study was the registration of digitized thin 2D sections of mouse vertebrae and tibiae used for histomorphometry of trabecular bone structure into 3D micro computed tomography (μCT) datasets of the samples from which the sections were prepared. Intensity-based and segmentation-based registrations (SegRegs) of 2D sections and 3D μCT datasets were applied. As the 2D sections were deformed during their preparation, affine registration for the vertebrae was used instead of rigid registration. Tibiae sections were additionally cut on the distal end, which subsequently undergone more deformation so that elastic registration was necessary. The Jaccard distance was used as registration quality measure. The quality of intensity-based registrations and SegRegs was practically equal, although precision errors of the elastic registration of segmentation masks in tibiae were lower, while those in vertebrae were lower for the intensity-based registration. Results of SegReg significantly depended on the segmentation of the μCT datasets. Accuracy errors were reduced from approximately 64% to 42% when applying affine instead of rigid transformations for the vertebrae and from about 43% to 24% when using B-spline instead of rigid transformations for the tibiae. Accuracy errors can also be caused by the difference in spatial resolution between the thin sections (pixel size: 7.25 μm) and the μCT data (voxel size: 15 μm). In the vertebrae, average deformations amounted to a 6.7% shortening along the direction of sectioning and a 4% extension along the perpendicular direction corresponding to 0.13–0.17 mm. Maximum offsets in the mouse tibiae were 0.16 mm on average.  相似文献   

10.
Model-image registration techniques have been used extensively for the measurement of joint kinematics in vivo. These techniques typically utilize an explicit measurement of X-ray projection parameters (principal distance, principal point), which is easily done for prospective studies. However, there is vast opportunity to derive useful information from previously collected clinical radiographic films where the projection parameters are unknown. The purpose of this study was to determine variation in measured knee arthroplasty kinematics when the X-ray projection parameters were unknown, but bounded. Based on the clinical radiographic protocol, a nominal principal point was chosen and eight additional points ±2 and ±5 cm in the horizontal and vertical directions were defined. Tibiofemoral kinematics were determined for all nine projection parameter sets for a series of 10 lateral radiographs. In addition, the principal distance was varied ±15 cm and tibiofemoral kinematics were determined for these two projection sets. Measured joint kinematics varied less than 0.6° and 0.4 mm for ±2 cm variations in principal point location, and 0.7° and 0.6 mm for ±5 cm variations in principal point location. Measured joint kinematics varied less than 0.6° and 0.7 mm for ±15 cm variations in principal distance. Variation in X-ray principal point and principal distance over clinically bounded ranges has a small effect on knee arthroplasty kinematics computed from model-image registration with high-quality clinical radiographs.  相似文献   

11.
Optical coherence tomography (OCT), enables high‐resolution 3D imaging of the morphology of light scattering tissues. From the OCT signal, parameters can be extracted and related to tissue structures. One of the quantitative parameters is the attenuation coefficient; the rate at which the intensity of detected light decays in depth. To couple the quantitative parameters with the histology one‐to‐one registration is needed. The primary aim of this study is to validate a registration method of quantitative OCT parameters to histological tissue outcome through one‐to‐one registration of OCT with histology. We matched OCT images of unstained fixated prostate tissue slices with corresponding histology slides, wherein different histologic types were demarcated. Attenuation coefficients were determined by a supervised automated exponential fit (corrected for point spread function and sensitivity roll‐off related signal losses) over a depth of 0.32 mm starting from 0.10 mm below the automatically detected tissue edge. Finally, the attenuation coefficients corresponding to the different tissue types of the prostate were compared. From the attenuation coefficients, we produced the squared relative residue and goodness‐of‐fit metric R2. This article explains the method to perform supervised automated quantitative analysis of OCT data, and the one‐to‐one registration of OCT extracted quantitative data with histopathological outcomes.   相似文献   

12.
Mutual information (MI)-based registration, which uses MI as the similarity measure, is a representative method in medical image registration. It has an excellent robustness and accuracy, but with the disadvantages of a large amount of calculation and a long processing time. In this paper, by computing the medical image moments, the centroid is acquired. By applying fuzzy c-means clustering, the coordinates of the medical image are divided into two clusters to fit a straight line, and the rotation angles of the reference and floating images are computed, respectively. Thereby, the initial values for registering the images are determined. When searching the optimal geometric transformation parameters, we put forward the two new concepts of fuzzy distance and fuzzy signal-to-noise ratio (FSNR), and we select FSNR as the similarity measure between the reference and floating images. In the experiments, the Simplex method is chosen as multi-parameter optimisation. The experimental results show that this proposed method has a simple implementation, a low computational cost, a fast registration and good registration accuracy. Moreover, it can effectively avoid trapping into the local optima. It is adapted to both mono-modality and multi-modality image registrations.  相似文献   

13.
Computer assisted surgical interventions and research in joint kinematics rely heavily on the accurate registration of three-dimensional bone surface models reconstructed from various imaging technologies. Anomalous results were seen in a kinematic study of carpal bones using a principal axes alignment approach for the registration. The study was repeated using an iterative closest point algorithm, which is more accurate, but also more demanding to apply. The principal axes method showed errors between 0.35 mm and 0.49 mm for the scaphoid, and between 0.40 mm and 1.22 mm for the pisiform. The iterative closest point method produced errors of less than 0.4 mm. These results show that while the principal axes method approached the accuracy of the iterative closest point algorithm in asymmetrical bones, there were more pronounced errors in bones with some symmetry. Principal axes registration for carpal bones should be avoided.  相似文献   

14.
Biomechanical preconditioning of biological specimens by cyclic loading is routinely done presumably to stabilize properties prior to the main phase of a study. However, no prior studies have actually measured these effects for whole bone of any kind. The aim of this study, therefore, was to quantify these effects for whole bones. Fourteen matched pairs of fresh-frozen intact cadaveric canine femurs were sinusoidally loaded in 4-point bending from 50?N to 300?N at 1?Hz for 25 cycles. All femurs were tested in both anteroposterior (AP) and mediolateral (ML) bending planes. Bending stiffness (i.e., slope of the force-vs-displacement curve) and linearity R(2) (i.e., coefficient of determination) of each loading cycle were measured and compared statistically to determine the effect of limb side, cycle number, and bending plane. Stiffnesses rose from 809.7 to 867.7?N/mm (AP, left), 847.3 to 915.6?N/mm (AP, right), 829.2 to 892.5?N/mm (AP, combined), 538.7 to 580.4?N/mm (ML, left), 568.9 to 613.8?N/mm (ML, right), and 553.8 to 597.1?N/mm (ML, combined). Linearity R(2) rose from 0.96 to 0.99 (AP, left), 0.97 to 0.99 (AP, right), 0.96 to 0.99 (AP, combined), 0.95 to 0.98 (ML, left), 0.94 to 0.98 (ML, right), and 0.95 to 0.98 (ML, combined). Stiffness and linearity R(2) versus cycle number were well-described by exponential curves whose values leveled off, respectively, starting at 12 and 5 cycles. For stiffness, there were no statistical differences for left versus right femurs (p?=?0.166), but there were effects due to cycle number (p?相似文献   

15.
《IRBM》2022,43(2):130-141
Background and ObjectiveAs is known, point clouds representing the objects are frequently used in object registration. Although the objects can be registered by using all the points in the corresponding point clouds of the objects, the registration process can also be achieved with a smaller number of the landmark points selected from the entire point clouds of the objects. This paper introduces a research study focusing on the fast and accurate rigid registration of the bilateral proximal femurs in bilateral hip joint images by using the random sub-sample points. For this purpose, Random Point Sub-sampling (RPS) was analyzed and the reduced point sets were used for an accurate registration of the bilateral proximal femurs in coronal hip joint magnetic resonance imaging (MRI) slices.MethodsIn registration, bilateral proximal femurs in MRI slices were registered rigidly by performing a process consisting of three main phases named as MR image preprocessing, proximal femur registration over the random sub-sample points and MR image postprocessing. In the stage of the MR image preprocessing, segmentation maps of the bilateral proximal femurs are obtained as region of interest (RoI) images from the entire MRI slices and then, the edge maps of the segmented proximal femurs are extracted. In the registration phase, the edge maps describing the proximal femur surfaces are represented as point clouds initially. Thereafter, the RPS is performed on the proximal femur point clouds and the number of points representing the proximal femurs is reduced at different ratios. For the registration of the point clouds, the Iterative Closest Point (ICP) algorithm is performed on the reduced sets of points. Finally, the registration procedures are completed by performing MR image postprocessing on the registered proximal femur images.ResultsIn performance evaluation tests performed on healthy and pathological proximal femurs in 13 bilateral coronal hip joint MRI slices of 13 Legg-Calve-Perthes disease (LCPD) patients, bilateral proximal femurs were successfully registered with very small error rates by using the reduced set of points obtained via the RPS and promising results were achieved. The minimum error rate was observed at RPS rate of 30% as the value of 0.41 (±0.31)% on all over the bilateral proximal femurs evaluated. When the range of RPS rate of 20-30% is considered as the reference, the elapsed time in registration can be reduced by almost 30-40% compared to the case where all the proximal femur points were included in registration. Additionally, it was observed that the RPS rate should be selected as at least 25% to achieve a successful registration with an error rate below 1%.ConclusionIt was concluded from the observed results that a more successful and faster registration can be accomplished by selecting fewer points randomly from the point sets of proximal femurs instead of using all the points describing the proximal femurs. Not only an accurate registration with low error rates was performed, but also a faster registration process was performed by means of the limited number of points that are sub-sampled randomly from the whole point sets.  相似文献   

16.
17.
IntroductionDeformable image registration (DIR) can play an important role in the context of adaptive radiotherapy. The AAPM Task Group 132 (TG-132) has described several quantitative measures for DIR error assessment but they can only be accurately defined when there is a ground-truth present in high-contrast regions. This work aims to set out a framework to obtain optimal results for CT-CT lung DIR in clinical setting for a commercially available system by quantifying the DIR performance in both low- and high-contrast regions.MethodsFive publicly available thorax datasets were used to assess the DIR quality. A “Ghost fiducial” method was implemented by windowing the contrast in a new feature provided by Varian Velocity v4.1. Target registration error (TRE) of the landmarks and Dice-similarity coefficient of the tumour were calculated at three different contrast settings to assess the algorithm in high- and low-contrast scenarios.ResultsFor the original unedited dataset, higher resolution DIR methods showed best performance acceptable within the recommended limit according to TG-132, when actual displacements were less than 10 mm. The relation of the actual displacement of the landmarks and TRE shows the limited capacity of the algorithm to deal with movements larger than 10 mm.ConclusionThis work found the performance of DIR methods and settings available in Varian Velocity v4.1 to be a function of contrast level as well as extent of motion. This highlights the need for multiple metrics to assess different aspects of DIR performance for various applications related to low-contrast and/or high-contrast regions.  相似文献   

18.
A method for measuring three-dimensional kinematics that incorporates the direct cross-registration of experimental kinematics with anatomic geometry from Computed Tomography (CT) data has been developed. Plexiglas registration blocks were attached to the bones of interest and the specimen was CT scanned. Computer models of the bone surface were developed from the CT image data. Determination of discrete kinematics was accomplished by digitizing three pre-selected contiguous surfaces of each registration block using a three-dimensional point digitization system. Cross-registration of bone surface models from the CT data was accomplished by identifying the registration block surfaces within the CT images. Kinematics measured during a biomechanical experiment were applied to the computer models of the bone surface. The overall accuracy of the method was shown to be at or below the accuracy of the digitization system used. For this experimental application, the accuracy was better than +/-0.1mm for position and 0.1 degrees for orientation for linkage digitization and better than +/-0.2mm and +/-0.2 degrees for CT digitization. Surface models of the radius and ulna were constructed from CT data, as an example application. Kinematics of the bones were measured for simulated forearm rotation. Screw-displacement axis analysis showed 0.1mm (proximal) translation of the radius (with respect to the ulna) from supination to neutral (85.2 degrees rotation) and 1.4mm (proximal) translation from neutral to pronation (65.3 degrees rotation). The motion of the radius with respect to the ulna was displayed using the surface models. This methodology is a useful tool for the measurement and application of rigid-body kinematics to computer models.  相似文献   

19.
Image registration has been used to support pixel-level data analysis on pedobarographic image data sets. Some registration methods have focused on robustness and sacrificed speed, but a recent approach based on external contours offered both high computational processing speed and high accuracy. However, since contours can be influenced by local perturbations, we sought more global methods. Thus, we propose two new registration methods based on the Fourier transform, cross-correlation and phase correlation which offer high computational speed. We found out that both proposed methods revealed high accuracy for the similarity measures considered, using control geometric transformations. Additionally, both methods revealed high computational processing speed which, combined with their accuracy and robustness, allows their implementation in near-real-time applications. Furthermore, we found that the current methods were robust to moderate levels of noise, and consequently, do not require noise removal procedure like the contours method does.  相似文献   

20.
三维图像的处理和操作需要将一般的断层序列插值成为具有各坐标轴一致的分辨率的体数据,而目前最常用的线性插值方法在层间距较大时会导致图像边缘模糊和出现伪影。Penney根据现有的非刚体匹配方法,提出了利用图像形变场数据的插值算法,大大提高了层间插值的质量。本文对Penney提出的算法进行了两方面的改进,在配准过程中用简单的单射性约束取代了复杂的平滑性约束,用邻域平均算法替代Penney使用的最邻近直线插值方法,并将新算法的实验结果与原算法、线性插值进行了对比,新算法在保持高质量插值的前提下提高了计算速度。该算法可以应用于精度要求比较高的体数据插值重建过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号