首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulsatile spiral blood flow in a modelled three-dimensional arterial stenosis, with a 75% cross-sectional area reduction, is investigated by using numerical fluid dynamics. Two-equation k-ω model is used for the simulation of the transitional flow with Reynolds numbers 500 and 1000. It is found that the spiral component increases the static pressure in the vessel during the deceleration phase of the flow pulse. In addition, the spiral component reduces the turbulence intensity and wall shear stress found in the post-stenosis region of the vessel in the early stages of the flow pulse. Hence, the findings agree with the results of Stonebridge et al. (2004). In addition, the results of the effects of a spiral component on time-varying flow are presented and discussed along with the relevant pathological issues.  相似文献   

2.
Local hemodynamics has been identified as one main determinant in the onset and progression of atherosclerotic lesions at coronary bifurcations. Starting from the observation that atherosensitive hemodynamic conditions in arterial bifurcation are majorly determined by the underlying anatomy, the aim of the present study is to investigate how peculiar coronary bifurcation anatomical features influence near-wall and intravascular flow patterns. Different bifurcation angles and cardiac curvatures were varied in population-based, idealized models of both stenosed and unstenosed bifurcations, representing the left anterior descending (LAD) coronary artery with its diagonal branch. Local hemodynamics was analyzed in terms of helical flow and exposure to low/oscillatory shear stress by performing computational fluid dynamics simulations.Results show that bifurcation angle impacts lowly hemodynamics in both stenosed and unstenosed cases. Instead, curvature radius influences the generation and transport of helical flow structures, with smaller cardiac curvature radius associated to higher helicity intensity. Stenosed bifurcation models exhibit helicity intensity values one order of magnitude higher than the corresponding unstenosed cases. Cardiac curvature radius moderately affects near-wall hemodynamics of the stenosed cases, with smaller curvature radius leading to higher exposure to low shear stress and lower exposure to oscillatory shear stress. In conclusion, the proposed controlled benchmark allows investigating the effect of various geometrical features on local hemodynamics at the LAD/diagonal bifurcation, highlighting that cardiac curvature influences near wall and intravascular hemodynamics, while bifurcation angle has a minor effect.  相似文献   

3.
In this study, we use dual‐wavelength optical imaging‐based laser speckle technique to assess cerebral blood flow and metabolic parameters in a mouse model of acute hyperglycemia (high blood glucose). The effect of acute glucose levels on physiological processes has been extensively described in multiple organ systems such as retina, kidney, and others. We postulated that hyperglycemia also alters brain function, which in turn can be monitored optically using dual‐wavelength laser speckle imaging (DW‐LSI) platform. DW‐LSI is a wide‐field, noncontact optical imaging modality that integrates the principles of laser flowmetry and oximetry to obtain macroscopic information such as hemoglobin concentration and blood flow. A total of eight mice (C57/BL6) were used, randomized into two groups of normoglycemia (control, n = 3) and hyperglycemia (n = 5). Hyperglycemia was induced by intraperitoneal injection of a commonly used anesthetic drug combining ketamine and xylazine (KX combo). We found that this KX combo increases blood glucose (BG) levels from 150 to 350 mg/dL, approximately, when measured 18 minutes post‐administration. BG continues to increase throughout the test period, with BG reaching an average of 463 ± 20.34 mg/dL within 60 minutes. BG levels were measured every 10 minutes from tail blood using commercially available glucometer. Experimental results demonstrated reductions in cerebral blood flow (CBF) by 55%, tissue oxygen saturation (SO2) by 15%, and cerebral metabolic rate of oxygen (CMRO2) by 75% following acute hyperglycemia. The observed decrease in these parameters was consistent with results reported in the literature, measured by a variety of experimental techniques. Measurements with laser Doppler flowmetry (LDF) were also performed which confirmed a reduction in CBF following acute hyperglycemia. In summary, our findings indicate that acute hyperglycemia modified brain hemodynamic response and induced significant changes in blood flow and metabolism. As far as we are aware, the implementation of the DW‐LSI to monitor brain hemodynamic and metabolic response to acute hyperglycemia in intact mouse brain has not been previously reported.   相似文献   

4.
A proper understanding of the interactions of body acceleration and a magnetic field with blood flow could be useful in the diagnosis and treatment of some health problems. In the work reported in this paper we studied the pulsatile flow of blood through stenosed arteries, including the effects of body acceleration and a magnetic field. Blood is regarded as an electrically conducting, incompressible, couple-stress fluid in the presence of a magnetic field along the radius of the tube. The effects of the body acceleration and the magnetic field on the axial velocity, flow rate, and fluid acceleration were obtained analytically by use of the Hankel transform and the Laplace transform. Velocity variations under different conditions are shown graphically. The results have been compared with those from other theoretical models, and are in good agreement. Finally, our mathematical model gives a simple velocity expression for blood flow so it will help not only in the field of physiological fluid dynamics but will also help medical practitioners with elementary knowledge of mathematics.  相似文献   

5.
The vulnerability of atheromatous plaques in the carotid artery may be related to several factors, the most important being the degree of severity of the endoluminal stenosis and the thickness of the fibrous cap. It has recently been shown that the plaque length can also affect the mechanical response significantly. However, in their study on the effect of the plaque length, the authors did not consider the variations of the plaque morphology and the shape irregularities that may exist independently of the plaque length. These aspects are developed in this paper. The mechanical interactions between the blood flow and an atheromatous plaque are studied through a numerical model considering fluid–structure interaction. The simulation is achieved using the arbitrary Lagrangian–Eulerian scheme in the COMSOL TM commercial finite element package. The stenosis severity and the plaque length are, respectively, set to 45% and 15 mm. Different shapes of the stenosis are modelled, considering irregularities made of several bumps over the plaque. The resulting flow patterns, wall shear stresses, plaque deformations and stresses in the fibrous cap reveal that the effects of the blood flow are amplified if the slope upstream stenosis is steep or if the plaque morphology is irregular with bumps. More specifically, the maximum stress in the fibrous cap is 50% larger for a steep slope than for a gentle slope. These results offer new perspectives for considering the shape of plaques in the evaluation of the vulnerability.  相似文献   

6.
ObjectivePoor total cavopulmonary connection (TCPC) hemodynamics have been hypothesized to be associated with long-term complications in Fontan patients. Image-based Fontan surgical planning has shown great potential as a clinical tool because it can pre-operatively evaluate patient-specific hemodynamics. Current surgical planning paradigms commonly utilize cardiac-gated phase contrast magnetic resonance (MR) imaging to acquire vessel flows. These acquisitions are often taken under breath-held (BH) conditions and ignore the effect of respiration on blood flow waveforms. This study investigates the effect of respiration-driven flow waveforms on patient-specific hemodynamics using real-time MR acquisitions.MethodsPatient-specific TCPCs were reconstructed from cardiovascular MR images. Real-time phase contrast MR images were acquired under both free-breathing (FB) and breath-held conditions for 9 patients. Numerical simulations were employed to assess flow structures and hemodynamics used in Fontan surgical planning including hepatic flow distribution (HFD) and indexed power loss (iPL), which were then compared between FB and BH conditions.ResultsDifferences in TCPC flow structures between FB and BH conditions were observed throughout the respiratory cycle. However, the average differences (BH – FB values for each patient, which are then averaged) in iPL and HFD between these conditions were 0.002 ± 0.011 (p = 0.40) and 1 ± 3% (p = 0.28), respectively, indicating no significant difference in clinically important hemodynamic metrics.ConclusionsRespiration affects blood flow waveforms and flow structures, but might not significantly influence the values of iPL or HFD. Therefore, breath-held MR acquisition can be adequate for Fontan surgical planning when focusing on iPL and HFD.  相似文献   

7.
In this study, we made use of dual‐wavelength laser speckle imaging (DW‐LSI) to assess cerebral blood flow (CBF) in the BTBR‐genetic mouse model of autism spectrum disorder, as well as control (C57Bl/6J) mice. Since the deficits in social behavior demonstrated by BTBR mice are attributed to changes in neural tissue structure and function, we postulated that these changes can be detected optically using DW‐LSI. BTBR mice demonstrated reductions in both CBF and cerebral oxygen metabolism (CMRO2), as suggested by studies using conventional neuroimaging technologies to reflect impaired neuronal activation and cognitive function. To validate the monitoring of CBF by DW‐LSI, measurements with laser Doppler flowmetry (LDF) were also performed which confirmed the lowered CBF in the autistic‐like group. Furthermore, we found in vivo cortical CBF measurements to predict the rate of hippocampal neurogenesis, measured ex vivo by the number of neurons expressing doublecortin or the cellular proliferation marker Ki‐67 in the dentate gyrus, with a strong positive correlation between CBF and neurogenesis markers (Pearson, r = 0.78; 0.9, respectively). These novel findings identifying cortical CBF as a predictive parameter of hippocampal neurogenesis highlight the power and flexibility of the DW‐LSI and LDF setups for studying neurogenesis trends under normal and pathological conditions.   相似文献   

8.
Computational characterizations of aortic valve hemodynamics have typically discarded the effects of coronary flow. The objective of this study was to complement our previous fluid–structure interaction aortic valve model with a physiologic coronary circulation model to quantify the impact of coronary flow on aortic sinus hemodynamics and leaflet wall shear stress (WSS). Coronary flow suppressed vortex development in the two coronary sinuses and altered WSS magnitude and directionality on the three leaflets, with the most substantial differences occurring in the belly and tip regions.  相似文献   

9.
10.
Flow through the endothelial surface layer (the glycocalyx and adsorbed plasma proteins) plays an important but poorly understood role in cell signaling through a process known as mechanotransduction. Characterizing the flow rates and shear stresses throughout this layer is critical for understanding how flow-induced ionic currents, deformations of transmembrane proteins, and the convection of extracellular molecules signal biochemical events within the cell, including cytoskeletal rearrangements, gene activation, and the release of vasodilators. Previous mathematical models of flow through the endothelial surface layer are based upon the assumptions that the layer is of constant hydraulic permeability and constant height. These models also assume that the layer is continuous across the endothelium and that the layer extends into only a small portion of the vessel lumen. Results of these models predict that fluid shear stress is dissipated through the surface layer and is thus negligible near endothelial cell membranes. In this paper, such assumptions are removed, and the resultant flow rates and shear stresses through the layer are described. The endothelial surface layer is modeled as clumps of a Brinkman medium immersed in a Newtonian fluid. The width and spacing of each clump, hydraulic permeability, and fraction of the vessel lumen occupied by the layer are varied. The two-dimensional Navier-Stokes equations with an additional Brinkman resistance term are solved using a projection method. Several fluid shear stress transitions in which the stress at the membrane shifts from low to high values are described. These transitions could be significant to cell signaling since the endothelial surface layer is likely dynamic in its composition, density, and height.  相似文献   

11.
Growing evidences suggest that long-term enhanced external counterpulsation (EECP) treatment can inhibit the initiation of atherosclerotic lesion by improving the hemodynamic environment in aortas. However, whether this kind procedure will intervene the progression of advanced atherosclerotic plaque remains elusive and causes great concern in its clinical application presently. In the current paper, a pilot study combining animal experiment and numerical simulation was conducted to investigate the acute mechanical stress variations during EECP intervention, and then to assess the possible chronic effects. An experimentally induced hypercholesterolemic porcine model was developed and the basic hemodynamic measurement was performed in vivo before and during EECP treatment. Meanwhile, A 3D fluid-structure interaction (FSI) model of blood vessel with symmetric local stenosis was developed for the numerical calculation of some important mechanical factors. The results show that EECP augmented 12.21% of the plaque wall stress (PWS), 57.72% of the time average wall shear stress (AWSS) and 43.67% of the non-dimensional wall shear stress gradient (WSSGnd) at throat site of the stenosis. We suggest that long-term EECP treatment may intervene the advanced plaque progression by inducing the significant variations of some important mechanical factors, but its proper effects will need a further research combined follow-up observation in clinic.  相似文献   

12.
The current study investigates the hyperemic flow effects on heamodynamics parameters such as velocity, wall shear stress in 3D coronary artery models with and without stenosis. The hyperemic flow is used to evaluate the functional significance of stenosis in the current era. Patients CT scan data of having healthy and coronary artery disease was chosen for the reconstruction of 3D coronary artery models. The diseased 3D models of coronary artery shows a narrowing of >50% lumen area. Computational fluid dynamics was performed to simulate the hyperemic flow condition. The results showed that the recirculation zone was observed immediate to the stenosis and highest wall shear stress was observed across the stenosis. The decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding of hyperemic flow effect under both conditions.  相似文献   

13.
Flow patterns and flow-related stresses contribute to the characterization of health risks, particularly the risk of plaque rupture, posed by a particular atherosclerotic stenosis. Blood flow in the presence of significant plaque deposits is investigated, and the influence of factors such as stenosis morphology and surface irregularity is evaluated. Solutions for three-dimensional, unsteady flow in these stenotic vessels are obtained for an incompressible, Newtonian fluid. The equations of motion are solved numerically using a finite volume formulation. The resulting flow patterns and shear and normal stresses are interpreted with respect to diagnostic implications, including the possibility of plaque rupture. The inadequacy of "percent stenosis" to characterize the risks posed by a particular plaque is demonstrated. Surface irregularity, stenosis aspect ratio, and the shape of the pulsatile waveform all have considerable influence on the flow field and on the stresses on the plaque. A measure of surface irregularity or plaque symmetry, in particular, may complement percent stenosis in diagnosing the risk of plaque rupture.  相似文献   

14.
Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consistent WSS distribution pattern. The WSS magnitude, however, is influenced by the model used. WSS is found to be the lowest in the vicinity of the three arch branches and along the distal walls of the branches themselves. In this region, the local non-Newtonian importance factor and the blood viscosity are elevated, and the shear rate is low. The present study revealed that the Newtonian assumption is a good approximation at mid-and-high flow velocities, as the greater the blood flow, the higher the shear rate near the arterial wall. Furthermore, the capabilities of the applied non-Newtonian models appeared at low-flow velocities. It is concluded that, while the non-Newtonian power-law model approximates the blood viscosity and WSS calculations in a more satisfactory way than the other non-Newtonian models at low shear rates, a cautious approach is given in the use of this blood viscosity model. Finally, some preliminary transient results are presented.  相似文献   

15.
Summary Human umbilical vein endothelial cells at confluence were subjected to steady shear flow. The effect of flow on the synthesis of fibronectin, its release into the medium, and incorporation into the extracellular matrix were investigated. The total content of fibronectin in endothelial cells exposed to flow was found to be lower than that in static controls after periods of 12 to 48 h. In the presence of cycloheximide there was no difference in the fibronectin content of sheared and unsheared cells. Our results suggest that the synthesis of fibronectin is inhibited by the flow-induced perturbation of endothelial cells. This work was supported by grant EET 8708692 from the National Science Foundation, Washington, DC; grant HL-40696 from the National Institutes of Health, Bethesda, MD; and a Research Initiation Grant from the Pennsylvania State University.  相似文献   

16.
The goal of this work is to compare coronary hemodynamics as predicted by computational blood flow models derived from two imaging modalities: coronary computed tomography angiography (CCTA) and intravascular ultrasound integrated with angiography (IVUS). Criteria to define boundary conditions are proposed to overcome the dissimilar anatomical definition delivered by both modalities. The strategy to define boundary conditions is novel in the present context, and naturally accounts for the flow redistribution induced by the resistance of coronary vessels. Hyperemic conditions are assumed to assess model predictions under stressed hemodynamic environments similar to those encountered in Fractional Flow Reserve (FFR) calculations. As results, it was found that CCTA models predict larger pressure drops, higher average blood velocity and smaller FFR. Concerning the flow rate at distal locations in the major vessels of interest, it was found that CCTA predicted smaller flow than IVUS, which is a consequence of a larger sensitivity of CCTA models to coronary steal phenomena. Comparisons to in-vivo measurements of FFR are shown.  相似文献   

17.
The recovery of proteins from yeast cell debris suspension was investigated using a vortex mixing technique based on the combination of oscillatory flow and a baffled flat-sheet microfiltration system. For this system, increased protein transmission was obtained through the use of low transmembrane pressures and the preincubation of the yeast cell debris feed suspension at 30 degrees C. Furthermore, a plateau in the flux-time curve was observed. In the absence of baffles and pulsations, preincubation had a little effect. (c) 1993 Wiley & Sons, Inc.  相似文献   

18.
Hemodynamic behaviour of blood in the bifurcated arteries are closely related to the development of cardiovascular disease. The secondary flows generated at the bifurcation zone promotes the deposition of atherogenic particles on the outer walls. The present study aims at suppressing the development of atherosclerosis plaque by inducing helical flow structure in the arterial passage. To realize this objective a novel swirl generator (stent like structure with an internal groove) has been developed to induce helicity in the bifurcated passage. The functional requirement of the swirl generator is to minimize the relative residence time (RRT) of the fluid layer near the endothelial wall without generating any additional pressure drop. Different configurations of the swirl generator have been tested computationally using large eddy simulation (LES) model. It is observed that the induced helical flow redistributes the kinetic energy from the centre to the periphery. A single rib swirl flow generator proximal to the stent treated passage can generate sufficient helicity to bring down the RRT by 36% without generating any additional pressure drop. The swirl flow adds azimuthal instability which increase vortex formations in the passage. The induced helical flow in the domain provokes more linked vortices, which may act as self-cleaning mechanism to the arterial wall.  相似文献   

19.
Effects of hemodynamic shear stress on endothelial cells have been extensively investigated using the “swirling well” method, in which cells are cultured in dishes or multiwell plates placed on an orbital shaker. A wave rotates around the well, producing complex patterns of shear. The method allows chronic exposure to flow with high throughput at low cost but has two disadvantages: a number of shear stress characteristics change in a broadly similar way from the center to the edge of the well, and cells at one location in the well may release mediators into the medium that affect the behavior of cells at other locations, exposed to different shears. These properties make it challenging to correlate cell properties with shear. The present study investigated simple alterations to ameliorate these issues. Flows were obtained by numerical simulation. Increasing the volume of fluid in the well-altered dimensional but not dimensionless shear metrics. Adding a central cylinder to the base of the well-forced fluid to flow in a square toroidal channel and reduced multidirectionality. Conversely, suspending a cylinder above the base of the well made the flow highly multidirectional. Increasing viscosity in the latter model increased the magnitude of dimensional but not dimensionless metrics. Finally, tilting the well changed the patterns of different wall shear stress metrics in different ways. Collectively, these methods allow similar flows over most of the cells cultured and/or allow the separation of different shear metrics. A combination of the methods overcomes the limitations of the baseline model.  相似文献   

20.
Monitoring of skin blood flow oscillations related with mechanical activity of vessels is a very useful modality during diagnosis of peripheral hemodynamic disorders. In this study, we developed a new model and technique for real-time conversion of skin temperature into skin blood flow oscillations, and vice versa. The technique is based on the analogy between the thermal properties of the human skin and electrical properties of the special low-pass filter. Analytical and approximated impulse response functions for the low- and high-pass filters are presented. The general algorithm for the reversible conversion of temperature into blood flow is described. The proposed technique was verified using simulated or experimental data of cold stress, deep inspiratory gasp, and post-occlusive reactive hyperaemia tests. The implementation of the described technique will enable to turn a temperature sensor into a blood flow sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号