首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urea in alcoholic beverage is a precursor of ethyl carbamate (EC), which is carcinogenic. Enzymatic elimination of urea has attracted much research interest. Acid urease with good tolerance toward ethanol and acid is ideal enzyme for such applications. In the present work, the structural genes of urease from Providencia rettgeri JN-B815, ureABC were efficiently expressed in E. coli BL21(DE3) in an active form (apourease) exhibiting both urease and urethanase (hydrolyze EC) activities. The specific activities of the purified apourease were comparatively low, which were 2.1 U/mg for urease and 0.6 U/mg for urethanase, respectively. However, apourease exhibited good resistance toward ethanol and acidic conditions. The relative activities of urease and urethanase remained over 80% in the buffers within pH 4–7. And the recoveries of both urease and urethanase activities were more than 50% in 5–25% ethanol solution. Apourease was utilized to eliminate urea in wine, and the residual urea in model wine was less than 50% after treatment with apourease for 30 h. Then 3D structure of UreC was predicted, and it was docked with urea and EC, respectively. The docking result revealed that three hydrogen bonds were formed between urea and amino acid residues in the active site of urease, whereas only one hydrogen bond can be formed between EC and the active center. Moreover, EC exhibited greater steric hindrance than urea when combined with the active site. Due to the low specific activities of apourease, both structural genes and accessory genes of urease were co-expressed in E. coli BL21(DE3). The holoenzyme was expressed as inclusion body. After renaturation and purification, the specific activities of urease and urethanase reached 10.7 and 3.8 U/mg, which were 5.62-fold and 6.33-fold of those of apourease, respectively. Therefore, accessory subunits of urease play an important role in enhancing urease and urethanase activities.  相似文献   

2.
The most effective way of enzymatic synthesis of biodiesel is through lipase-catalyzed transesterification, while its performance and economic feasibility should still be improved. In this study, lipase produced by an isolated Burkholderia sp. was immobilized on microsize Celite materials functionally modified with long alkyl groups. The specific activity of the immobilized lipase was 1,154 U/g. The methanolysis of olive oil catalyzed by the immobilized lipase obeyed Ping Pong Bi Bi model with an estimated V max, K m,TG, K m,M and K i,M value of 0.61 mol/(L min), 7.93 mol/L, 1.01 mol/L, and 0.24 mol/L, respectively. The activation energy of the enzymatic reaction is estimated as 15.51 kJ/mol. The immobilized lipase exhibits high thermal stability with thermal deactivation energy of 83 kJ/mol and a long half-life. The enthalpy, Gibb’s free energy, and entropy of the immobilized lipase were in the range of 80.02–80.35 kJ/mol, 88.35–90.13 kJ/mol, and ?28.22 to ?25.11 J/(mol K), respectively.  相似文献   

3.
We describe a technique whereby intracellular urease activity can be localized by transmission electron microscopy. The ammonia produced from the enzymatic hydrolysis of urea is first precipitated with sodium tetraphenylboron and then replaced with silver to produce electron-dense silver tetraphenylboron. This direct reaction product deposition procedure was used to demonstrate the presence of membrane-bound urease of Staphylococcus sp. H3-22, a gram-positive ruminal bacterium.  相似文献   

4.
微生物酶法消除黄酒中氨基甲酸乙酯研究进展   总被引:3,自引:0,他引:3  
氨基甲酸乙酯(Ethyl carbamate,EC)具有致癌性,广泛存在于酒精饮料中。我国的黄酒因EC含量高而带来的食品安全问题越来越受到人们的关注。微生物酶法消除黄酒中的EC具有直接、高效的特性而被深入研究。文中从黄酒中EC的形成机制、酸性脲酶研究现状、氨基甲酸乙酯水解酶研究现状等方面概述了微生物酶法消除黄酒中EC的研究进展及存在的问题。并针对这些问题,提出了寻找新型氨基甲酸乙酯水解酶、Fe~(3+)依赖型双功能酸性脲酶食品级表达与定向进化及双酶并用将尿素和EC一起消除的策略。  相似文献   

5.
The paper deals with kinetics of the urea hydrolysis by microbial-origin urease dissolved and immobilized on the organic silica surface. It is shown that hydrolysis kinetics for soluble urease is described by the Michaelis-Menten equation until the concentration of urea reaches 1 M. Two fractions differing in the Michaelis constant are revealed for silochrome immobilized urease. The rate of urea hydrolysis by native and immobilized urease was studied depending on the pH value in presence of the substrate in the 1 M and 5 mM concentration. The hydrolysis rate of 1 M urea in the buffer-free solution by silochrome-immobilized urease is practically independent of pH within 4.5-6.5. Application of a 2.5 mM phosphate-citrate buffer as a solvent causes an increase in the hydrolysis rate within this pH range. For a soluble urease the 1 M urea hydrolysis rate dependence on pH is ordinary at pH 5.8-6.0. If the substrate concentration is 5 mM, the pH-dependences for the rate of the urea hydrolysis by silochrome- and aerosil-immobilized urease are close and at pH above 6.0 coincide with those for a soluble enzyme. The found differences in the properties of soluble and immobilized ureases are explained by the substrate and reaction products diffusion.  相似文献   

6.
The interaction of poly-5-bromouridylic acid [poly(BU)] with adenosine and 9-methyladenine was studied by equilibrium dialysis, optical melting, and microcalorimetry. The stacking free energy, ω, was estimated as ?17.6 kJ/mol for adenosine·2poly(BU) and ?18.8 kJ/mol for 9-methyladenine·2poly(BU) from the binding isotherms constructed from equilibrium dialysis results. The binding isotherms constructed from a series of melting curves also gave ω values for adenosine·2poly(BU). The thermal stability of the complex depends on monomer concentration, and the partial molar enthalpies of the complex formation at the midpoint of the transition were evaluated from the Tm coefficients as a function of free monomer concentration. The values of ?92.0 and ?90.4 kJ/mol were obtained for adenosine·2poly(BU) and 9-methyladenine·2poly(BU) in 0.4M NaCl–0.02M Na-cacodylate–5 × 10?4M EDTA (pH 7.0), respectively. Microcalorimetric measurements provided lower integral heats of reaction values for these complexes, i.e., ?73.2 kJ/mol for adenosine·2poly(BU) and ?71.5 kJ/mol for 9-methyladenine·2poly(BU). A comparison with a polyribouridylic acid system provided a quantitative understanding of a stabilization by bromination in terms of thermodynamic parameters.  相似文献   

7.
An enzymatic membrane for application in the processes of decomposition and removal of urea from aqueous solutions was prepared: jack bean urease was immobilized on an aminated polysulphone membrane by adsorption. The inhibition of the system by boric acid was studied using procedures based on the MICHAELIS-MENTEN integrated equation (non-linear regression, and the linear transformations of WALKER and SCHMIDT, JENNINGS and NIEMANN, and BOOMAN and NIEMANN). The reaction was carried out in a 100 mM phosphate buffer of pH 7.0, containing 2 mM EDTA, obtained by neutralization of orthophosphoric acid with NaOH, at an initial urea concentration of 10 mM, and a temperature of 25 °C. The reaction was initiated by the addition of the enzyme to the urea solution, and was monitored by removing samples of the reaction mixture for NH3 determinations by the phenol-hypochlorite method until the urea was exhausted. The results were compared with those obtained earlier under the same reaction conditions for free urease and urease covalently immobilized on chitosan. The inhibition was found to be competitive, similar to that of the free enzyme and urease immobilized on chitosan, with inhibition constants Ki equal to 0.36, 0.19 and 0.60 mM. The results show that adsorption of the enzyme on a polysulphone membrane changed the enzyme to a lesser degree than covalent immobilization of the enzyme on a chitosan membrane.  相似文献   

8.

(1S)-2-chloro-1-(3, 4-difluorophenyl) ethanol ((S)-CFPL) is an intermediate for the drug ticagrelor, and is manufactured via chemical approaches. To develop a biocatalytic solution to (S)-CFPL, an inventory of ketoreductases from Chryseobacterium sp. CA49 were rescreened, and ChKRED20 was found to catalyze the reduction of the ketone precursor with excellent stereoselectivity (>99 % ee). After screening an error-prone PCR library of the wild-type ChKRED20, two mutants, each bearing a single amino acid substitution of H145L or L205M, were identified with significantly increased activity. Then, the two critical positions were each randomized by constructing saturation mutagenesis libraries, which delivered several mutants with further enhanced activity. Among them, the mutant L205A was the best performer with a specific activity of 178 μmol/min/mg, ten times of that of the wild-type. Its k cat/K m increased by 15 times and half-life at 50 °C increased by 70 %. The mutant catalyzed the complete conversion of 150 and 200 g/l substrate within 6 and 20 h, respectively, to yield enantiopure (S)-CFPL with an isolated yield of 95 %.

  相似文献   

9.
The soybean urease (urea amidohydrolase; EC 3.5.1.5) was investigated to elucidate the presence of sulfhydryl (–SH) groups and their significance in urea catalysis with the help of various –SH group specific reagents. The native urease incubated with 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB) showed exponential increase in the absorbance, thereby revealing the presence of –SH groups. A total of 34 –SH groups per hexamer enzyme molecule were estimated from the absorption studies which represents nearly six –SH groups per subunit. The time-dependent inactivation of urease with DTNB, p-chloromercuribenzoate (p-CMB), N-ethylmaleimide (NEM) and iodoacetamide (IAM) showed biphasic kinetics, where half of the enzyme activity was lost more rapidly than the other half. This study reveals the presence of two categories of “accessible” –SH groups, one category being more reactive than the other. The inactivation of urease by p-CMB was largely reversed on treatment with cysteine, which might be due to unblocking of –SH group by mercaptide exchange reaction. Finally, when NEM inactivated urease was incubated with sodium fluoride, a time-dependent regain of activity was observed with higher concentrations of fluoride ion.  相似文献   

10.
A bacterium which degrades urethane compounds was isolated and identified as Rhodococcus equi strain TB-60. Strain TB-60 degraded toluene-2,4-dicarbamic acid dibutyl ester (TDCB) and accumulated toluene diamine as the degradation product. The enzyme which cleaves urethane bond in TDCB was strongly induced by acetanilide. The purified enzyme (urethane hydrolase) was found to be homogeneous on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The molecular weight was estimated to be 55 kDa. The optimal temperature and pH were 45°C and 5.5, respectively. The enzyme hydrolyzed aliphatic urethane compound as well as aromatic ones. The activity was inhibited by HgCl2, p-chrolomercuribenzoic acid, and phenylmethylsulfonyl fluoride, suggesting that cysteine and/or serine residues play an important role in the activity. The enzyme catalyzed the hydrolysis of anilides, amides, and esters as well as TDCB. It was characterized as a novel amidase/esterase, differing in some properties from other known amidases/esterases.  相似文献   

11.
Fifteen plant species from a protected cloud forest (CF) in Veracruz, Mexico, were screened for their in vitro capacity to inhibit the growth of the phytopathogenic bacteria Chryseobacterium sp., Pseudomonas cichorii, Pectobacterium carotovorum and Pantoea stewartii, causal agents of damage to crops like ‘chayote’, lettuce, potato and corn. As a result, the bioactivity of Turpinia insignis and Leandra cornoides is reported for the first time against Chryseobacterium sp. and P. cichorii. In addition, 24 and 18 compounds not described for these species were dereplicated by an UPLC/MS‐MS method, respectively. The identified compounds included simple phenols, hydroxycinnamic acids, flavonoids and coumarins. The antibacterial assay of 12 of them demonstrated the bacteriostatic effect of vanillin, trans‐cinnamic acid, scopoletin and umbelliferone against Chryseobacterium sp. These findings confirm for the first time the value of the CF plants from Veracruz as sources of bioactive natural products with antimicrobial properties against phytopathogenic bacteria.  相似文献   

12.
Jack bean urease (urea aminohydrolase, E.C. 3.5.1.5) was entrapped into chitosan–alginate polyelectrolyte complexes (C-A PEC) and poly(acrylamide-co-acrylic acid)/κ-carrageenan (P(AAm-co-AA)/carrageenan) hydrogels for the potential use in immobilization of urease, not previously reported. The effects of pH, temperature, storage stability, reuse number, and thermal stability on the free and immobilized urease were examined. For the free and immobilized urease into C-A PEC and P(AAm-co-AA)/carrageenan, the optimum pH was found to be 7.5 and 8, respectively. The optimum temperature of the free and immobilized enzymes was also observed to be 55 and 60 °C, respectively. Michaelis–Menten constant (K m) values for both immobilized urease were also observed smaller than free enzyme. The storage stability values of immobilized enzyme systems were observed as 48 and 70%, respectively, after 70 days. In addition to this, it was observed that, after 20th use in 5 days, the retained activities for immobilized enzyme into C-A PEC and P(AAm-co-AA)/carrageenan matrixes were found as 55 and 89%, respectively. Thermal stability of the free urease was also increased by a result of immobilization.  相似文献   

13.
High throughput covalent urease immobilization was performed through the amide bond formation between the urease and the amino-functional MNPs. The enzyme’s performances, including shelf-life, reusability, enzymatic kinetics, and the enzyme relative activity in organic media was improved. At optimal conditions, the immobilization efficiency was calculated about 95.0% with keeping 94.7% of the urease initial specific activity. The optimal pH for maximum activity of the free and immobilized urease was calculated as 7.0 at 37.0 °C and 8.0 at 60.0 °C, respectively. The kinetics studies showed the Km of 26.0 mM and 8.0 mM and the Vmax of 5.31 μmol mg−1 min−1 and 3.93 μmol mg−1 min−1 for the free and immobilized urease, respectively. The ratio Kcat/Km as a measure of catalytic efficiency and enzyme specificity was calculated as 0.09 mg mL−1 min−1 and 0.22 mg mL−1 min−1 for the free and immobilized urease, respectively, indicating an improvement in the enzymatic kinetics. The shelf-life and operational studies of immobilized urease indicated that approximately 97.7% and 88.5% of its initial activity was retained after 40 days and 17 operational cycles, respectively. The immobilized urease was utilized to urea removal from water samples with an efficiency between 91.5–95.0%.  相似文献   

14.
Jack bean urease has been immobilized on arylamine glass beads (200–400 mesh size, 75–100 Å pore size) and its properties compared with soluble enzyme. The binding of urease was 13.71 mg per gram beads. The Km for soluble and immobilized urease for urea was 4.20 mM and 8.81 mM, respectively. Vmax values of urease decreased from 200 to 43.48 μmol of ammonia formed per min per mg protein at 37°C on immobilization. Both pH and buffer ions influenced the activities of soluble as well as immobilized urease. Soluble urease exhibited pH optima at 5.5 and 8.0. However, immobilized urease showed one additional pH optimum at 6.5. In comparison to phosphate buffer, citrate buffer was inhibitory to urease activity. Immobilization of urease on arylamine glass beads resulted in improved thermal, storage and operational stability. Because of inertness of support and stability of immobilized urease, the preparation can find applications in ‘artificial kidney’ and urea estimation in biological fluids viz., blood, milk etc.  相似文献   

15.
Reaction ofKlebsiella aerogenes urease with diethylpyrocarbonate (DEP) led to a pseudo-first-order loss of enzyme activity by a reaction that exhibited saturation kinetics. The rate of urease inactivation by DEP decreased in the presence of active site ligands (urea, phosphate, and boric acid), consistent with the essential reactive residue being located proximal to the catalytic center. ThepH dependence for the rate of inactivation indicated that the reactive residue possessed apK a of 6.5, identical to that of a group that must be deprotonated for catalysis. Full activity was restored when the inactivated enzyme was treated with hydroxylamine, compatible with histidinyl or tyrosinyl reactivity. Spectrophotometric studies were consistent with DEP derivatization of 12 mol of histidine/mol of native enzyme. In the presence of active site ligands, however, approximately 4 mol of histidine/mol of protein were protected from reaction. Each protein molecule is known to possess two catalytic units; hence, we propose that urease possesses at least one essential histidine per catalytic unit.  相似文献   

16.
In order to determine the impact of immobilization on biocatalytic efficacy of sulfide oxidase, the kinetic and thermodynamic properties of native and DEAE-cellulose immobilized sulfide oxidase from Arthrobacter species FR-3 were evaluated. Immobilization increased the catalytic efficiency of sulfide oxidase by producing a lower Michaelis-Menten constant (Km) and a higher rate of catalysis (Vmax) at different temperatures. The first-order kinetic analysis of thermal denaturation demonstrated that the values of enthalpy (delta H*d) and entropy (delta S*d) of immobilized sulfide oxidase were lower than the native enzyme, confirming the thermal stabilization of sulfide oxidase by immobilization. The delta H*d and delta S*d of the immobilized enzyme at 35 degrees C were 138.07 kJ/mol and 122.04 J/K/mol, respectively. These results suggest that immobilization made the sulfide oxidase from Arthrobacter sp. FR-3 thermodynamically more efficient for catalysis of sulfide oxidation.  相似文献   

17.
B.R. Mohapatra and M. Bapuji. 1997. Eighty per cent of the urethanase activity of Micrococcus sp. isolated from the marine sponge Spirastrella sp. was cell associated. The urethanase had optimal activity at pH 5.0 and 45 °C. The activation and deactivation energies of the partially purified enzyme, calculated from an Arrhenius plot, were 9.31 and 34.01 kcal mol−1, respectively. The enzyme was not affected by EDTA and the major cations of sea water, such as Ca2+, Mg2+ and Na+. The enzyme was resistant to 20% (v/v) ethanol and may be practically applicable in the removal of urethane from alcoholic beverages.  相似文献   

18.
β-Glucosidase from bitter almonds was immobilized on epoxy group-functionalized beads for catalyzing salidroside synthesis in a two-step process with n-butyl-β-D-glucoside (BG) as the glucosyl donor. The formation of salidroside ((0.59?±?0.02) M) at a yield of 39.04%±1.25% was accomplished in 8?h by the transglucosylation of immobilized β-glucosidase at pH 8.0 and 50?°C when the ratio of BG to tyrosol was 1:2 (mol/mol). A study on the influence of different glycosyl acceptors demonstrated that the yield of the glucosylation reaction of phenylmethanol and cyclohexanol was higher than that of either phenol or cyclohexanol. This may account for the selectivity of the immobilized enzyme towards the alcoholic hydroxyl group of tyrosol in the salidroside synthesis reaction. A study on the synthesis of BG via the reverse hydrolysis of immobilized β-glucosidase showed that a yield of 78.04%±2.2% BG can be obtained with a product concentration of (0.23?±?0.015) M.  相似文献   

19.
Soluble and alginate immobilized urease was utilized for detection and quantitation of mercury in aqueous samples. Urease from the seeds of pumpkin, being a vegetable waste, was extracted and purified to apparent homogeneity (sp. activity 353 U/mg protein; A280/A260 = 1.12) by heat treatment at 48 ± 0.1 °C and gel filtration through Sephadex G-200. Homogeneous enzyme preparation was immobilized in 3.5% alginate leading to 86% immobilization, no leaching of enzyme was found over a period of 15 days at 4 °C. Urease catalyzed urea hydrolysis by soluble and immobilized enzyme revealed a clear dependence on the concentration of Hg2+. Inhibition caused by Hg2+ was non-competitive (Ki = 1.2 × 10−1 μM for soluble and 1.46 × 10−1 μM for alginate immobilized urease.). Time-dependent inhibition both in presence and in absence of Hg2+ ion revealed a biphasic inhibition in activity. For optimization of this process response surface methodology (RSM) was utilized where two-level-two-full factorial (22) central composite design (CCD) has been employed. The regression equation and analysis of variance (ANOVA) were obtained using MINITAB® 15 software. Predicted values thus obtained were closed to experimental value indicating suitability of the model. 3D response surface plot, iso-response contour plot and process optimization curve were helpful to predict the results by performing only limited set of experiments.  相似文献   

20.
Urea in alcoholic beverages is a precursor of ethyl carbamate, which is carcinogenic. Acid urease (EC 3.5.1.5) is regarded as a good approach to scavenge the urea. The acid urease of Enterobacter sp. R-SYB082, with lower optimum pH than the widely used commercial acid urease, exhibited a urea removal rate of 66.5% in Chinese rice wine, which was higher than that of the commercial acid urease (58.9%). The production of the acid urease was optimized from 1,100 to 2,504 U L−1 by an approach which includes the optimization of initial glucose concentration, the elevation of anaerobic level of the reactor by charging CO2 and in vitro natural activation of the target enzyme by simple cold storage (4°C). These would open up the possibility for developing industrial application of this acid urease for producing high-quality Chinese rice wine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号