首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Proton translocation of the bovine chromaffin-granule membrane.   总被引:3,自引:0,他引:3       下载免费PDF全文
Bovine chromaffin granules were lysed and their membranes resealed to give osmotically sensitive 'ghosts'. These swell in the presence of salts and MgATP. It is shown that this is due to proton entry accompanied by anions. The rate of swelling depends on the anion present, but swelling is not limited to media containing permeant anions. It is quite marked in solutions of sulphates, phosphates and acetates. It is not uncoupler-sensitive, suggesting that at least one component of swelling is due to coupled proton and anion entry (non-electrogenic proton translocation). Direct measurements of transmembrane pH and potential gradients generated in the presence of MgATP shows that these are rapidly established in sucrose media, and are rather little affected by the presence of salts. They contribute roughly equally to the total protonmotive force. The potential gradient is establihsed very rapidly, but the pH gradient is generated over several minutes. The gradients are not completely dissipated by uncoupler, and it is shown that, in media containing sulphate but no permeant anion, sulphate can be taken up by the 'ghosts'. There thus appear to be two mechanisms of proton translocation across the membrane, both dependent on ATP hydrolysis: an electrogenic transfer of protons, and proton movement linked to an anion transporter of broad specificity.  相似文献   

2.
Resealed chromaffin-granule ;ghosts' were used to study the steady-state kinetics of catecholamine transport. The pump has a high affinity for (-)-noradrenaline, (-)-adrenaline, tyramine and 5-hydroxytryptamine (serotonin), but a lower affinity for (+)-noradrenaline. The measured rates of incorporation do not conform to Michaelis-Menten kinetics, but affinity constants for the former substrates are in the range 8-18mum. Reserpine is a potent inhibitor. Incorporation as a function of ATP concentration also fails to show simple kinetics; the affinity constant for ATP is deduced to be about 3mm at 1mm-MgCl(2). Adenylyl (betagamma-methylene)diphosphonate is a competitive inhibitor at low concentrations, but inhibits more strongly at high concentrations. The pump has a transition temperature at 29 degrees C and does not seem to be identical with the Mg(2+)-stimulated adenosine triphosphatase of chromaffin granules.  相似文献   

3.
'Ghosts' of bovine chromaffin granules, in which the complex mixture of proteins and solutes normally found in the granule matrix is replaced by buffered sucrose are osmotically sensitive. They shrink when the osmotic pressure of the suspension medium is increased, and swell if solute entry is facilitated by the addition of ionophores. Swelling in the presence of ionophores has been used to investigate the passive ion permeability of these membranes. They have a very low permeability to K+ ions (of the order of 10(-10) cm/s); their permeability to protons, Na+ and choline ions is too low to be detected by these methods. Their passive permeability to anions decreases in the order: CNS- greater than I- greater than CCl3CO2- greater than Br- greater than Cl- greater than SO4(2)- greater than CH3CO2-, HCO3-, F-, PO4(3)- the permeability to hiocyanate being of the order of 10(-7) cm/s. Coupled proton and anion entry is extremely slow, except for weak acids. Fluoride, unexpectedly, also appears to enter rapidly when proton/K+ exchange is facilitated by nigericin. In the presence of K+ salts, nigericin, like valinomycin, induces lysis of intact granules, an effect that is not dependent on the presence of a permeant anion, but is dependent on the pH gradient across the membrane.  相似文献   

4.
5-Hydroxytryptamine is accumulated by resealed chromaffin-granule 'ghosts' if a pH gradient (acid inside) is imposed across their membranes by preincubating them at low pH. This uptake, like that driven by MgATP, is reserpine- and uncoupler-sensitive. This strongly suggests that catecholamines are taken up by intact granules in response to a pH gradient. In line with this, it is shown that 5-hydroxytryptamine decreases the pH gradient generated in the presence of MgATP, an effect that is inhibited by reserpine; nigericin, which discharges the pH gradient in the presence of K+, inhibits uptake. Permeant anions, however, also inhibit uptake. It is suggested that this may be because they permit equilibration of amine cations directly across the membrane, down concentration gradients.  相似文献   

5.
Summary These experiments were designed to determine whether proton-driven86Rb uptake was present in apical membrane vesicles prepared from rat ileum. The uptake of86Rb was approximately 300 to 350% greater in the presence of a 100-fold H+ gradient than in its absence and was greater at 1, 2 and 5 minutes (overshoot) than that at 90 minutes. Proton-driven86Rb uptake was decreased by 20% in TMA-nitrate compared to that in TMA-gluconate. 0.3mm amiloride did not significantly inhibit proton-driven86Rb uptake; in contrast, proton-driven22Na uptake was significantly inhibited by 0.3mm amiloride by 34%. Similarly, 25mm KCl inhibited proton-driven86Rb uptake more than that of22Na, while the inhibition of proton-driven22Na uptake by 25mm NaCl was greater than that of86Rb. In additional studies intravesicular acidification measured by acridine orange fluorescence was demonstrated in the presence of an out-wardly directed K gradient. These studies demonstrate that a proton gradient stimulates86Rb uptake and a K gradient induces intravesicular acidification; and that these fluxes are mediated by a K/H exchange distinct from Na/H exchange which is also present in this membrane. We conclude that a specific exchange process for K/H is located in ileal apical membrane vesicles.  相似文献   

6.
Cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum has been purified to homogeneity by a new procedure. The carbohydrate and amino acid compositions of the enzyme have been determined. Cellobiose oxidase contains FAD and cytochrome b prosthetic groups. Mr of the enzyme has been estimated at 74400 by sedimentation equilibrium. The enzyme is a monomer. Optical, fluorescence and e.p.r. spectra of oxidized and reduced cellobiose oxidase have been determined. A preliminary investigation of the substrate specificity of cellobiose oxidase reveals that disaccharides and even some insoluble polysaccharides are substrates, but not monosaccharides. Strong substrate inhibition is seen at high concentrations of cellobiose. This effect is particularly marked when oxygen is the electron acceptor. Cellobiose oxidase is unusual among flavoproteins, since it stabilizes the red anionic flavin semiquinone and forms a sulphite adduct, yet appears to produce the superoxide anion as its primary reduced oxygen product.  相似文献   

7.
Phosphatidylinositol kinase. A component of the chromaffin-granule membrane   总被引:2,自引:6,他引:2  
Phosphorylation of bovine chromaffin granules by ATP leads to the formation of diphosphoinositide in the granule membrane. Both phosphatidylinositol kinase and its substrate are components of this membrane, and triphosphoinositide is not formed under the conditions of the assay. The reaction is Mg(2+)-dependent and is stimulated by Mn(2+) and F(-) ions. The initial reaction is rapid, with a broad pH profile and a ;transition' temperature for its activation energy at 27 degrees C. The apparent K(m) for ATP is 5mum. ATP, N-ethylmaleimide, Cu(2+) ions and NaIO(4) are inhibitory. The phospholipids of chromaffin-granule membranes have been analysed: 6.8% of the lipid P is found in phosphatidylinositol, and only 2-3% in phosphatidylserine. Comparison of the rate of phosphorylation of intact and lysed granules suggests that the sites for phosphorylation are on the outer (cytoplasmic) surface of the granules, and diphosphoinositide may therefore make an important contribution to the charge of the chromaffin granule in vivo.  相似文献   

8.
The proton leak across the mitochondrial inner membrane   总被引:10,自引:0,他引:10  
The proton conductance of the mitochondrial inner membrane increases at high protonmotive force in isolated mitochondria and in mitochondria in situ in rat hepatocytes. Quantitative analysis of its importance shows that about 20-30% of the oxygen consumption by resting hepatocytes is used to drive a heat-producing cycle of proton pumping by the respiratory chain and proton leak back to the matrix. The flux control coefficient of the proton leak pathway over respiration rate varies between 0.9 and zero in mitochondria depending on the rate of respiration, and has a value of about 0.2 in hepatocytes. Changes in the proton leak pathway in situ will therefore change respiration rate. Mitochondria isolated from hypothyroid animals have decreased proton leak pathway, causing slower state 4 respiration rates. Hepatocytes from hypothyroid rats also have decreased proton leak pathway, and this accounts for about 30% of the decrease in hepatocyte respiration rate. Mitochondrial proton leak may be a significant contributor to standard metabolic rate in vivo.  相似文献   

9.
Transplasma membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes containb cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.  相似文献   

10.
The association of adenosine triphosphatase and ADP/ATP isotope-exchange activities with chromaffin-granule membranes was shown by sucrose-density-gradient centrifugation. The two activities were solubilized, and separated by differential sedimentation.  相似文献   

11.
12.
The kinetics of water exchange across the membrane of class II chloroplasts has been studied by two NMR methods. Both methods utilize Dy(en)3+ (en = ethylenediamine) to induce a transmembranal chemical shift the order of 40 Hz in the water proton resonance. The shift reagent is impermeant to the chloroplast membrane, inert as a redox reagent, soluble at millimolar concentrations at neutral pH, and associated with a large, virtually temperature independent molar shift (0.10-0.12 ppm/mM). Water exchange across the membrane is monitored by two independent experiments. In the first, chemical exchange causes line broadening in the water proton resonance in the high-resolution spectrum. Measurement of the incremental linewidth as a function of transmembranal chemical shift determines the exchange kinetics as well as the fractions of water protons in internal and external media. In the second experiment, chemical exchange causes the transverse relaxation time, as measured by the Carr-Purcell-Gill-Meiboom technique, to be dependent on the 180 degree pulse spacing. The two experiments, while independent of each other, depend on the same set of theoretical parameters. These parameters are overdetermined by simultaneous analysis of both experiments. The mean lifetime of a water proton in the inner thylakoid space is found to be 1.1 +/- 0.8 ms at 25 degrees C and 2.75 +/- 0.4 ms at 3 degrees C in NH2OH/EDTA-treated chloroplasts. Values derived from dark-adapted chloroplasts that are active with respect to oxygen evolution are 1.1 +/- 0.3 ms (25 degrees C) and 1.75 +/- 0.4 ms (3 degrees C). The internal thylakoid volume is also determined in principle by the data, but uncertainties in the membrane volume and the transmembranal chemical shift severely limits the accuracy of this measurement.  相似文献   

13.
We have tested the efficacy of fluorescent probes for the measurement of intracellular pH in Saccharomyces cerevisiae. Of the compounds tested (fluorescein, carboxyseminaphthorhodafluor-1 (C.SNARF-1) and 2',7'bis(carboxyethyl)-5(6')-carboxyfluorescein), C.SNARF-1 was found to be the most useful indicator of internal pH. Fluorescence microscopy showed that in Saccharomyces cerevisiae strain DAUL1, C.SNARF-1 and fluorescein had a heterogeneous distribution, with dye throughout the cytoplasm and concentration of the dye to an area close to the cell membrane. This region was also labeled by quinacrine, which is known to accumulate in acidic regions of the cell. Saccharomyces cerevisiae BJ4932, which carries a defect in vacuolar acidification, did not show the same degree of dye concentration, suggesting that the site of C.SNARF-1 and fluorescein localisation in DAUL1 is the acidic vacuole. Changes in intracellular pH could be monitored by measuring changes in the fluorescence intensity of C.SNARF-1. The addition of glucose caused an initial, rapid decrease in fluorescence intensity, indicating a rise in cellular pH. This was followed by slow acidification. Fluorescence intensity changes were similar in all strains studied, suggesting that the localisation of dye to acidic regions does not affect the measurement of intracellular pH in DAUL1. The changes in intracellular pH on the addition of glucose correlated well with glucose-induced changes in external pH. Preincubation of cells in the presence of the plasma membrane H(+)-ATPase inhibitor diethylstilbestrol reduced extracellular acidification and intracellular alkalinisation on the addition of glucose. Both amiloride and 5-(N-ethyl-N-isopropyl)amiloride also inhibited glucose-induced proton fluxes. Phorbol 12-myristate 13-acetate had no effect on the activity of the plasma membrane ATPase.  相似文献   

14.
Acidification of weakly buffered suspensions of the cyanobacteria Anacystis nidulans, Nostoc sp. strain MAC, Dermocarpa sp. and Anabaena variabilis was observed after the application of oxygen pulses to anaerobic cells. The acidification was caused by proton extrusion from the oxygen pulsed cells since it was eliminated by the uncoupler (H+ ionophore) carbonyl cyanide m-chlorophenylhydrazone. Results with the inhibitors dicyclohexylcarbodiimide or 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, orthovanadate and cyanide indicated the association of various fractions of the observed proton extrusion with different activities of the cell membrane, viz. a H+-translocating reversible F0F1-ATPase, a unidirectional H+-translocating ATP hydrolase, and a respiratory electron transport system, respectively. Further parameters investigated were the pH dependence and the H+/O stoichiometry of the H+ extrusion from oxygen pulsed cyanobacteria. H+/O ratios at neutral pH were between 4 (Anacystis nidulans) and 0.3 (Dermocarpa) with uninhibited, actively phosphorylating cells and between 2 (Anacystis nidulans) and 0.4 (Dermocarpa) with ATPase-inhibited (ATP-depleted) cells, respectively. It is significant that with all four cyanobacteria tested a major fraction of the observed H+ ejection remained unaffected by ATPase inhibitors even at concentration which completely abolished all oxidative phosphorylation. Vanadate had a major effect on the H+ extrusion from Anabaena only. From this it is concluded that in the cyanobacterial species investigated part of the H+ extrusion from oxygen pulsed cells is directly linked to some H+-translocating respiratory electron transport chain present in the cell membrane.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD N, N-dicyclohexylcarbodiimide - DCMU N-(3,4-dichlorophenyl-)N,N-dimethylurea - NBD 7-chloro-4-nitrobenzoxa-1,3-diazole - TPP+ tetraphenylphosphonium - Mes 2-(N-morpholino)ethanesulfonic acid - Pipes piperazine-N,N-bis-(2-ethanesulfonic acid) - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Taps tris (hydroxymethyl)-methyl-aminopropanesulfonic acid - Ches 2-(N-cyclohexylamino)-ethanesulfonic acid - Caps 3-cyclohexylamino)-1-propanesulfonic acid; according to most textbooks (e.g. Nicholls 1982) the terms proton electrochemical potential ( ) and protonmotive force (pmf, p), both of which equivalently describe the energetic state of energy-transducing membranes, were used synonymously and expressed in mV units throughout this article (however, cf. Lowe and Jones 1984) Dedicated to Prof. G. Drews on the occasion of his 60th birthday  相似文献   

15.
Resealed bovine chromaffin-granule 'ghosts' were used for assaying the membrane-bound form of dopamine beta-hydroxylase. Hydroxylation of the substrate tyramine is dependent on its accumulation within the 'ghosts', where the active site of the enzyme is located. Free tyramine in the medium is at a low concentration, low ionic strength and a relatively high pH (7.0), so that even in the presence of a reducing agent (co-reductant) the unaccumulated amine is hydroxylated at a negligible rate. 'Ghosts' contain an endogenous co-reductant, which is shown to be catecholamine remaining in the membrane itself after granule lysis. Catecholamine that is free in solution in the medium or in the interior of the 'ghosts' is not effective as co-reductant, nor is ascorbate, in contrast with the situation with soluble dopamine beta-hydroxylase. Ferrocyanide is an active co-reductant, however, giving a hydroxylation rate approximately equal to the tyramine accumulation rate: it does not enter the 'ghosts', nor does the enzyme appear to utilize ferrocyanide sealed inside the 'ghosts'. A mechanism must therefore exist for transferring electrons across the membrane from the cytoplasmic surface to the matrix surface. NADH is not an electron donor for the enzyme, nor is cytochrome b-561 involved.  相似文献   

16.
The kinetics of bicarbonate-chloride exchange across the human red cell membrane was studied by following the time course of extracellular pH in a stopped-flow rapid-reaction apparatus during transfer of H+ into the cell by the CO2 hydration-dehydration cycle, under conditions where the rate of the process was determined by HCO3--Cl- exchange flux across the membrane. The flux of bicarbonate increased linearly with [HCO3-] gradient from 0.6 to 20 mM across the red cell membrane at both 37 degrees C and 2 degrees C, and decreased as transmembrane potential was increased by decreasing extracellular [Cl-]. An Arrhenius plot of the rate constants for the exchange indicates that the Q10 is strongly dependent on temperature, being about 1.7 between 24 degrees C and 42 degrees C and about 7 between 2 degrees C and 12 degrees C. These data agree well with the published values for Q10 of 1.2 between 24 degrees C and 40 degrees C and of 8 between 0 degrees C and 10 degrees C. The results suggest that different processes may determine the rate of HCO3- -Cl- exchange at low vs. physiological temperatures, and that the functional (and/or structural) properties of the red cell membrane vary markedly with temperature.  相似文献   

17.
Changes in pH in rat brain synaptic vesicles (SV) were studied with the use of the fluorescent slightly basic dye acridine orange. The pH value in isolated SV was found to be acidic, which was confirmed by the ionophore sensitive accumulation of the dye. Addition of ATP provoked further acidification of the intravesicular medium. The acidification rate reached a maximum after dissipation of the existing H+ gradient seen during preincubation in the absence of ATP. The ATP-dependent acidification was eliminated by the protonophore carbonylcyanide m-chlorophenylhydrazone, H4Cl or the detergent triton X-199 (0.025%). Valinomycin inhibited the ATP-dependent translocation of H+ whatever the incubation medium (with KCl or NaCl). Dicyclohexylcarbodiimide, a known inhibitor of proton ATPases (100 microM) as well as ethylmaleimide (100 microM) completely blocked H+ translocation whereas oligomycin, a specific blocker of mitochondrial H+-ATPase, and ouabain did not influence that process. ATP induced H+ translocation only in the presence of Mn2+ or Mg2+ but not in the presence of Ca2+. The translocation of H+ was not affected by the replacement of univalent cations (KCl, NaCl or Cl), however, it was prevented completely upon replacement of the penetrating anion Cl- by the non-penetrating anion O2-4 or upon replacement of the salts by sucrose. It is concluded that the ATP-dependent translocation of H+ in SV is mediated via H+-ATPase which maintains the low pH value in SV.  相似文献   

18.
19.
Summary Stationary and nonstationary state45Ca fluxes as well as Sr–Ca exchange movements were studied in energy-depleted human erythrocyte ghosts at different intra-and extracellular Ca concentrations. Influx and efflux followed the kinetics of a closed two-compartment system. The influx and efflux rate constants (kin andkout, respectively, fractions of total extra- or intracellular45Ca that move in one direction per unit time) were similar in magnitude. They decreased with increasing Ca concentration on the cisside and increased with increasing Ca concentration on the trans-side of the membrane. Hence, the fluxes in both directions were characterized by saturation kinetics and appeared to be partially caused by an exchange diffusion mechanism. In the presence of a moderate inward (up to 8mm) or outward (up to 2mm) Ca concentration gradient, kin andkout did not vary in the course of an experiment and did not differ significantly from rates which were measured under stationary state conditions. Extracellular Sr induced an outward transport of intracellular Ca against the concentration gradient (counter-transport). The resulting inward Ca concentration gradient (maximal inside-to-outside concentration ratio as 1 to 3) persisted since extra- and intracellular Sr did not equilibrate. Analogous results were obtained studying45Ca–40Ca countertransport. In net flow experiments Ca–Sr exchange proved to occur on a one-for-one basis. Ca–Sr exchange was additive to the noncoupled Ca and Sr net downhill movements. The experimental results suggest that a specific ATP-independent Ca transfer system exists in the erythrocyte membrane which acts symmetrically on the two sides of the membrane and is restricted to a tightly coupled one-for-one exchange diffusion.  相似文献   

20.
The kinetics of HCO3?/Cl? exchange across red cell membrane of newborn infants was studied using a stopped-flow rapid reaction apparatus with a glass pH electrode attached. The measured apparent permeability P is (1.35±0.08 (S.E.)) · 10?4 cm/s (n=30) for newborns, compared with (3.1 ± 0.4) · 10?4 cm/s (n=15) for adults. These correspond to half-times of 0.2 s for newborns and 0.1 s for adults indicating that neonatal red cells exchange Cl? for HCO3? only half as fast as do adult cells. The temperature dependence of the exchange rate was studied from 2 to 42°C. From the Arrhenius plot the activation energy of the exchange process in neonatal red cells changes from 22.9 kcal/mol (low temperature) to 4.8 kcal/mol (physiological temperature) at a transition temperature of 17°C. These values are lower than the corresponding values for adult red cells, 34.7 and 10.2 kcal/mol. HCO3?/Cl? exchanges in both adult and neonatal red cells are inhibited by phlorizin. Inhibition constants Ki are 0.8 mM and 2.5 mM for adults and newborns, respectively. The differences in the values of the HCO3?/Cl? exchange rate constant and the activation energy of the exchange process between neonatal and adult red cells indicate that there is a modification of HCO3?/Cl? transport system in the neonatal red cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号