首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The present study aims to understand the effects of interindividual differences in thermal comfort on the relationship between the preferred temperature and the thermoregulatory responses to ambient cooling. Thirteen young women subjects chose the preferred ambient temperature (preferred Ta) in a climate chamber and were categorized into the H group (preferring ≥29 °C; n=6) and the M group (preferring <29 °C; n=7). The H group preferred warmer sensations than the M group (P<0.05) and the average of preferred Ta was 27.6 °C and 30.2 °C in the M group and H group, respectively. Then all subjects were exposed to temperature variations in the climate chamber. During Ta variations from 33 °C to 25 °C, the H group felt colder than the M group, although no difference was noted in the Tsk (mean skin temperature) and Ts-hand between the 2 groups. From the view of the relationship between the Tsk and thermal sensation, although the thermal sensitivity to the Tsk was almost similar in the H and M groups, the H group might have lower threshold to decreasing Ta than the M group.  相似文献   

2.
Basal metabolic rate (BMR) is thought to be a major hub in the network of physiological mechanisms connecting life history traits. Evaporative water loss (EWL) is a physiological indicator that is widely used to measure water relations in inter- or intraspecific studies of birds in different environments. In this study, we examined the physiological responses of summer-acclimatized Hwamei Garrulax canorus to temperature by measuring their body temperature (Tb), metabolic rate (MR) and EWL at ambient temperatures (Ta) between 5 and 40 °C. Overall, we found that mean body temperature was 42.4 °C and average minimum thermal conductance (C) was 0.15 ml O2 g−1 h−1 °C−1 measured between 5 and 20 °C. The thermal neutral zone (TNZ) was 31.8–35.3 °C and BMR was 181.83 ml O2 h−1. Below the lower critical temperature, MR increased linearly with decreasing Ta according to the relationship: MR (ml O2 h−1)=266.59–2.66 Ta. At Tas above the upper critical temperature, MR increased with Ta according to the relationship: MR (ml O2 h−1)=−271.26+12.85 Ta. EWL increased with Ta according to the relationship: EWL (mg H2O h−1)=−19.16+12.64 Ta and exceeded metabolic water production at Ta>14.0 °C. The high Tb and thermal conductance, low BMR, narrow TNZ, and high evaporative water production/metabolic water production (EWP/MWP) ratio in the Hwamei are consistent with the idea that this species is adapted to warm, mesic climates, where metabolic thermogenesis and water conservation are not strong selective pressures.  相似文献   

3.
In laboratories mice are typically housed at ambient temperatures (Ta) of 20-24 °C, which are below their average preferred Ta of ≈30 °C. Adjusting laboratory Ta is not a solution because preferences differ depending on activity, time of the day, and gender. We tested the hypothesis that providing mice with nesting material will allow behavioral thermoregulation and reduce aversion to colder Ta. We housed C57BL/6J mice with and without nesting material in a set of 3 connected cages, each maintained at a different Ta (20, 25, or 30 °C). Mice were confined in and given free access to the Ta options to determine if thermotaxis or nest building was the primary mode of behavioral thermoregulation. As predicted, nesting material reduced aversion to 20 °C but the overall preference, in both treatments, was still 30 °C. Inactive and nesting behaviors were more likely to be seen in contact with nesting material while active behaviors were more likely to be observed when not in contact. Nest quality increased with decreasing Ta when mice could not use thermotaxis but nest quality was uncorrelated with Ta when thermotaxis was possible. Males decreased nest quality with increasing temperatures but females showed no correlation. We conclude that nesting material does not alter thermal preferences for 30 °C when thermotaxis is possible, indicating thermotaxis as the primary mode of behavioral thermoregulation. However, when thermotaxis is not possible, mice adjust nest shape depending on the Ta. Nesting material appears to partially compensate for cooler Ta and is especially important when mice are inactive. Therefore, nesting material may be a solution to the mismatch between laboratory Ta and mouse thermal preferences.  相似文献   

4.
1.
Field body temperatures (Tb's) of Chamaeleo chamaeleon in southwestern Spain averaged 28 °C in October and 30 °C in June. Slopes of regressions of Tb on Ta (ambient temperature at perch height) indicated that individuals were able to maintain a preferred body temperature of about 30 °C in June but not in October.  相似文献   

5.
Foraging honeybees are subjected to considerable variations of microclimatic conditions challenging their thermoregulatory ability. Solar heat is a gain in the cold but may be a burden in the heat. We investigated the balancing of endothermic activity with radiative heat gain and physiological functions of water foraging Apis mellifera carnica honeybees in the whole range of ambient temperatures (Ta) and solar radiation they are likely to be exposed in their natural environment in Middle Europe.The mean thorax temperature (Tth) during foraging stays was regulated at a constantly high level (37.0-38.5 °C) in a broad range of Ta (3-30 °C). At warmer conditions (Ta = 30-39 °C) Tth increased to a maximal level of 45.3 °C. The endothermic temperature excess (difference of Tbody − Ta of living and dead bees) was used to assess the endogenously generated temperature elevation as a correlate of energy turnover. Up to a Ta of ∼30 °C bees used solar heat gain for a double purpose: to reduce energetic expenditure and to increase Tth by about 1-3 °C to improve force production of flight muscles. At higher Ta they exhibited cooling efforts to get rid of excess heat. A high Tth also allowed regulation of the head temperature high enough to guarantee proper function of the bees’ suction pump even at low Ta. This shortened the foraging stays and this way reduced energetic costs. With decreasing Ta bees also reduced arrival body weight and crop loading to do both minimize costs and optimize flight performance.  相似文献   

6.
The purpose of this study was to investigate ethnic differences in cutaneous thermal sensation thresholds and the inter-threshold sensory zone between tropical (Malaysians) and temperate natives (Japanese). The results showed that (1) Malaysian males perceived warmth on the forehead at a higher skin temperature (Tsk) than Japanese males (p<0.05), whereas cool sensations on the hand and foot were perceived at a lower Tsk in Malaysians (p<0.05); (2) Overall, the sensitivity to detect warmth was greater in Japanese than in Malaysian males; (3) The most thermally sensitive body region of Japanese was the forehead for both warming and cooling, while the regional thermal sensitivity of Malaysians had a smaller differential than that of Japanese; (4) The ethnic difference in the inter-threshold sensory zone was particularly noticeable on the forehead (1.9±1.2 C for Japanese, 3.2±1.6 °C for Malaysians, p<0.05). In conclusion, tropical natives had a tendency to perceive warmth at a higher Tsk and slower at an identical speed of warming, and had a wider range of the inter-threshold sensory zone than temperate natives.  相似文献   

7.
Little is known about the thermoregulatory response of the eland, a tropical animal often raised in temperate climate. We compared the surface temperature (Ts) of the eland with that of similarly sized Holstein–Friesian dairy cattle at three different ambient temperatures (Ta) to get better evidence about thermal response. The Ts of all body areas (neck, dewlap, trunk, body forepart, barrel, body hind part, forelimb and rear limb) did not differ at Ta 29.2 °C, but at Ta 12.5 °C all the areas of the eland (except the neck) had lower mean Ts than those areas in cattle. At Ta 0.4 °C, only the eland dewlap had a lower Ts and the eland neck had a higher Ts than that in cattle.  相似文献   

8.
Heat stress in Bos taurus cattle is a problem that affects many regions of the world. Numerous studies have focused on heat stress in feedlots or environmental chambers; but few have looked at undisturbed cattle on pasture. The present study followed two Bos taurus cattle breeds throughout a mid-Missouri summer to determine thermoregulatory responses to fluctuating summer air temperature (Ta), as well as differences in adaptation to heat. Heat-sensitive Angus steers (ANG; n=22; 480±7.15 kg BW), and heat-tolerant Romosinuano steers (RO; n=11; 352±6 kg BW) were monitored on 12 day from June through August of 2009 in an endophyte free tall fescue pasture. Data were grouped into two, six-day periods representing peak (Period 1) and late (Period 2) summer for determination of adaptation. Respiration rate (RR) was measured via flank counting and telemetric temperature transmitters in the rumen of each animal monitored core temperature (Trum). Romosinuano sustained a lower (P<0.05) RR and Trum compared to ANG during both periods. Linear relationships for RR and Trum, compared against Ta for both Periods were determined. Slopes of RR to Ta from Period 1 to Period 2 decreased (P<0.05) from 2.63 to 1.08 bpm/°C and 2.25 to 0.49 bpm/°C for ANG and RO, respectively. Slopes of Trum to Ta also decreased (P<0.05) from Periods 1 to 2 from 0.12 to 0.02 °C Trum/°C Ta for ANG; however, RO showed no differences between periods. Although Romosinuano have a lower respiration rate and ruminal temperature than Angus, they share a similar pattern of respiration rate adaptation from early to late summer periods.  相似文献   

9.
1.
Thermoregulatory behavior of fed and fasted desert hamsters (Phodopus roborovskii) acclimated to summer- [16 light (L):8 dark (D), ambient temperature (Ta)=26.5 °C] and winter-like (8L:16D, Ta=10 °C) conditions was studied. Body temperature (Tb), selected temperature and activity were measured in hamsters placed in a thermal gradient system for 48 h.  相似文献   

10.
To examine whether cutaneous active vasodilatation is mediated by sudomotor nerve fibres we recorded cutaneous blood flow and sweat rates continuously with laser-Doppler flowmetry and capacitance hygrometry, respectively, from the dorsal and plantar aspects of the foot in 11 male subjects at varying ambient temperatures (T a) between 22 and 40°C (relative humidity 40%). In a warmer environment (T a 29–40°C), predominant responses of the blood flow curve from the sole of the foot were transient depressions (negative blood flow responses, NBR), whereas those from the dorsal foot were transient increases (positive blood flow responses, PBR). The PBR on the dorsal foot occurred spontaneously or in response to mental or sensory stimuli, and when PBR did not fuse with each other the rate of PBR was linearly related to tympanic temperature. When dorsal foot sweating was continuous, PBR on the dorsal foot almost entirely synchronized with sweat expulsion. When dorsal foot sweating was intermittent PBR sometimes occurred on the dorsal foot without corresponding sweat expulsions, but these PBR showed a complete correspondence with subthreshold sweat expulsion seen on a methacholine-treated area. The amplitude and the duration of PBR showed a significant linear relationship with the amplitude and the duration of the corresponding sweat expulsion. In a thermoneutral or cooler environment (T a 22–29°C), PBR occurred on the sole of the foot when mental or sensory stimuli elicited sweating in that area. Thus, PBR occurred when and where sweating appeared. Atropine failed to abolish PBR on the dorsal foot. Blockade of the peroneal nerve eliminated both PBR and NBR on the dorsal foot. The results indicate that an active vasodilatation mechanism is present on the sole of the foot as well as on the dorsal foot, and thus suggest that active vasodilatation is closely related to sudomotor nerve activation.  相似文献   

11.
Heat stress studies are often conducted using controlled laboratory exposures or field exposures. Each approach has limitations and provides a partial understanding of complex interactions between simultaneous environmental stressors. The question is how similar the responses are in each situation. Several physiological measures of thermal status were used to compare heat stress responses of cattle in controlled chamber stress tests and fluctuating field conditions. Angus steers (N=23; 318±8 kg BW) were first placed on either endophyte-infected or -uninfected tall fescue pastures for the field exposure, followed by a controlled heat challenge, which exacerbates the condition known as fescue toxicosis. During the controlled heat challenge, steers were assigned to diets of either 0 or 40 μg ergovaline/kg/d to maintain the treatment states. Respiration rate (RR) was measured via flank counting and telemetric temperature transmitters in the rumen of each animal monitored core temperature (Trum). Linear regression fit models for RR, Trum, and air temperature (Ta) were utilized to compare relationships between field and chamber exposure. Correlation coefficients for RR were similar during both chamber (R=0.69) and field exposures (R=0.72). Respiration rate showed greater responsiveness to change in Ta under field conditions having twice the slope (4.40 versus 1.75 bpm/°C) and a lower Y-intercept (−42.14 versus +30.97 bpm) compared to the chamber run. Ruminal temperature was consistent between exposures showing a similar slope (0.04 versus 0.03 °C Trum/°C Ta) and Y-intercept (38.40 versus 39.30 °C) for its relationship with Ta. Despite respiration rate being the more sensitive indicator of heat stress, ruminal temperature proved to be the most consistent between environments.  相似文献   

12.
The control of pulmonary ventilation in South American lungfish Lepidosiren paradoxa is poorly understood. Interactions between temperature and hypoxia are particularly relevant due to large seasonal variations of its habitat. Therefore, we tested the hypothesis that the ventilatory responses to aerial hypoxia of Lepidosiren are highly dependent on ambient temperature. We used a pneumotachograph to measure pulmonary ventilation (VE), tidal volume (VT) and respiratory frequency (fR) during normoxic (21% O2) and hypoxic (12%, 10% and 7% O2) conditions at two temperatures (25 and 35 °C). Blood gases, arterial PO2 (PaO2), arterial PCO2 (PaCO2) and arterial pH (pHa) were also evaluated. At 25 °C, VE increased significantly at 10% and 7% hypoxic levels when compared to the control value (21% O2). At 35 °C, all hypoxic levels elicited a significant increase of VE relative to control values. VE is augmented mostly by increases of respiratory frequency (fR), and there were significant interactions (p<0.001) between aerial hypoxia and temperature. PaCO2 increased from ∼22 mmHg (normoxic value at 25 °C) to ∼32 mmHg (normoxic value at 35 °C). Concomitantly, the pHa decreased from 7.51 (25 °C) to 7.38 (35 °C). Hypoxia-induced hyperventilation caused a reduction in PaCO2 and an increase in pHa, which were more pronounced at 35 °C than at 25 °C, reflecting an increased hyperventilation under the high temperature. In conclusion, the magnitude of ventilatory response is highly temperature-dependent in L. paradoxa, which is important for an animal experiencing large seasonal variations.  相似文献   

13.
Remote measurements of body temperature (Tb) in animals require implantation of relatively large temperature-sensitive radio-transmitters or data loggers, whereas rectal temperature (Trec) measurements require handling and therefore may bias the results. We investigated whether ∼0.1 g temperature-sensitive subcutaneously implanted transponders can be reliably used to quantify thermal biology and torpor use in small mammals. We examined (i) the precision of transponder readings as a function of temperature and (ii) whether subcutaneous transponders can be used to remotely record subcutaneous temperature (Tsub). Five adult male dunnarts (Sminthopsis macroura, body mass 24 g) were implanted with subcutaneous transponders to determine Tsub as a function of time and ambient temperature (Ta), and in comparison to thermocouple readings of Trec. Transponder temperature was highly correlated with water bath temperature (r2=0.96–0.99) over a range of approximately 10.0–40.0 °C. Transponders provided reliable data (±0.6 °C) over the Tsub of 21.4–36.9 °C and could be read from a distance of up to 5 cm. Below 21.4 °C, accuracy was reduced to ±2.8 °C, but individual transponder accuracy varied. Consequently, small subcutaneous transponders are useful to remotely quantify thermal physiology and torpor patterns without having to disturb the animal and disrupt torpor. Even at Tsub<21.4 °C where the accuracy of the temperature readings was reduced, transponders do provide reliable data on whether and when torpor is used.  相似文献   

14.
It is important to understand the effects of environmental conditions during plant growth on longevity and temperature response of pollen. Objectives of this study were to determine the influence of growth temperature and/or carbon dioxide (CO2) concentration on pollen longevity and temperature response of peanut and grain sorghum pollen. Plants were grown at daytime maximum/nighttime minimum temperatures of 32/22, 36/26, 40/30 and 44/34 °C at ambient (350 μmol mol−1) and at elevated (700 μmol mol−1) CO2 from emergence to maturity. At flowering, pollen longevity was estimated by measuring in vitro pollen germination at different time intervals after anther dehiscence. Temperature response of pollen was measured by germinating pollen on artificial growth medium at temperatures ranging from 12 to 48 °C in incubators at 4 °C intervals. Elevated growth temperature decreased pollen germination percentage in both crop species. Sorghum pollen had shorter longevity than peanut pollen. There was no influence of CO2 on pollen longevity. Pollen longevity of sorghum at 36/26 °C was about 2 h shorter than at 32/22 °C. There was no effect of growth temperature or CO2 on cardinal temperatures (Tmin, Topt, and Tmax) of pollen in both crop species. The Tmin, Topt, and Tmax identified at different growth temperatures and CO2 levels were similar at 14.9, 30.1, and 45.6 °C, respectively for peanut pollen. The corresponding values for sorghum pollen were 17.2, 29.4, and 41.7 °C. In conclusion, pollen longevity and pollen germination percentage was decreased by growth at elevated temperature, and pollen developed at elevated temperature and/or elevated CO2 did not have greater temperature tolerance.  相似文献   

15.
Seasonal variations in ambient temperature (Ta) require changes in thermoregulatory responses of endotherms. These responses vary according to several factors including taxon and energy constraints. Despite a plethora of studies on chiropteran variations in thermoregulation, few have examined African species. In this study, we used the Wahlberg's epauletted fruit bat (Epomophorus wahlbergi, body mass≈115 g) to determine how the thermoregulatory abilities of an Afrotropical chiropteran respond to seasonal changes in Ta. Mass specific Resting Metabolic Rates (RMRTa) and basal metabolic rate (BMR) were significantly higher in winter than in summer. Furthermore, winter body mass was significantly higher than summer body mass. A broad thermoneutral zone (TNZ) was observed in winter (15–35 °C) compared with summer (25–30 °C). This species exhibited heterothermy (rectal and core body temperature) during the photophase (bats' rest-phase) particularly at lower Tas and had a low tolerance of high Tas. Overall, there was a significant seasonal variation in the thermoregulatory abilities of E. wahlbergi. The relative paucity of data relating to the seasonal thermoregulatory abilities of Afrotropical bats suggest further work is needed for comparison and possible effects of climate change, particularly extreme hot days.  相似文献   

16.
Three month old hatchling Crocodylus porosus with data loggers in their stomachs were placed in thermal gradients, in isolation (N=16) and in groups of 4 (N=8 groups; 32 individuals). Mean Tb and variation in Tb (SD) was not different whether individual crocodiles in isolation were fasted or fed, or if individuals were housed in isolation (I) or in groups (G). However, individuals in isolation (N=16) maintained slightly lower Tbs than those in groups (N=32) during the early morning (06:00–11:00 h). The overall mean Tb recorded for fasted individuals in the isolated and group treatments (N=48) was 30.9±2.3 °C SD, with 50% of Tbs (Tset) between 29.4 °C and 32.6 °C, and a voluntary maximum and minimum of 37.6 °C and 23.2 °C respectively. During the day (11:00–17:00 h), individuals in isolation and in groups selected the warmer parts of the gradient on land, where they moved little. Outside of this quiescent period (QP), activity levels were much higher and they used the water more. There was a strong diurnal cycle for fasted individuals in isolation and in groups, with Tb during the QP (31.9±2.09 °C; N=48) significantly higher than during the non-quiescent period (NQP: 30.6±2.31 °C). Thermal variation (SD) in Tb was relatively stable throughout the day, with the highest variation at around dusk and early evening (18:00–20:00 h), which coincided with a period of highest activity. The diurnal activity cycle appears innate, and may reflect the need to engage in feeding activity at the water's edge in the early evening, despite ambient temperatures being cooler, with reduced activity and basking during the day. If so, preferred Tb may be more accurately defined as the mean Tb during the QP rather than the NQP. Implications for the thermal environment best suited for captive C. porosus hatchlings are discussed.  相似文献   

17.
The combined thermal load created by exercise and a hot environment is associated with an exaggerated core temperature response. The elevated core temperature is believed to increase the total stress of the exercise. Increased stress during exercise has been associated with increased levels of cortisol. The association of cortisol with increased inflammatory responses following exercise in the heat is equivocal. Thus, the purpose of the current investigation was to explore the relationship between increases in rectal temperature (Tre) and TNFα and cortisol. To induce Tre changes, 8 male subjects (mean±SD, age=23.6±2 yr, VO2max=52.8±3.7 mL/kg/min, BMI=24.2±1.9) participated in two 40 min trials of cycle ergometry at 65% of VO2peak immersed to chest level in cool (25 °C) and warm (38.5 °C) water. Tre was monitored throughout each trial, with blood samples taken immediately pre and post of each trial. Neither cortisol nor TNFα changed significantly during exercise in the cool water; however, in the warm trial, both cortisol and TNFα significantly increased (p<0.004). Concordance correlations (Rc) between Δ cortisol and Δ TNFα indicated a strong but non-significant correlation (Rc=0.833, p=0.135). In conclusion, changes in core temperature may be impacting the relationship between exercise induced changes in cortisol and TNFα. Therefore, acute moderate-intensity exercise (40 min or less) in warm water impacts the stress and inflammatory response. Understanding this is important because exercise load may need to be adjusted in warm and hot environments to avoid the negative effects of elevated stress and inflammation response.  相似文献   

18.
In many ectotherms, selection of environmental thermal niches may positively affect growth, nutrient assimilation rates, immune system function, and ultimately survival. Temperature preference in some turtle species may be influenced by environmental conditions, including acclimation temperature. We tested for effects of acclimation temperature (22 °C, 27 °C) on the selected temperature and movement patterns of 14 juvenile Malaclemys terrapin (Reptilia: Emydidae) in an aquatic thermal gradient of 14–34 °C and in single-temperature (22 °C, 27 °C) control tests. Among 8–10 month old terrapins, acclimation temperature influenced activity and movement patterns but did not affect temperature selection. In thermal gradient and single-temperature control tests, turtles acclimated to 27 °C used more tank chambers and relocated between chambers significantly more frequently than individuals acclimated to 22 °C. However, acclimation temperature did not affect temperature selection: both 22- and 27 °C-acclimated turtles selected the warmest temperature (34 °C), and avoided the other temperatures available, during thermal gradient tests. These results suggest that young M. terrapin are capable of detecting small temperature increments and prefer warm temperatures that may positively influence growth and metabolism.  相似文献   

19.
The stability of bovine lactoperoxidase to denaturation by guanidinium–HCl, urea, or high temperature was examined by differential scanning calorimetry (DSC) and tryptophan fluorescence. The calorimetric scans were observed to be dependent on the heating scan rate, indicating that lactoperoxidase stability at temperatures near Tm is controlled by kinetics. The values for the thermal transition, Tm, at slow heating scan rate were 66.8, 61.1, and 47.2 °C in the presence of 0.5, 1, and 2 M guanidinium–HCl, respectively. The extrapolated value for Tm in the absence of guanidinium–HCl is 73.7 °C, compared with 70.2 °C obtained by experiment; a lower experimental value without a denaturant is consistent with distortion of the thermal profile due to aggregation or other irreversible phenomenon. Values for the heat capacity, Cp, at Tm and Ea for the thermal transition decrease under conditions where Tm is lowered. At a given concentration, urea is less effective than guanidinium–HCl in reducing Tm, but urea reduces Cp relatively more. Both fluorescence and DSC indicate that thermally denatured protein is not random coil. A change in fluorescence around 35 °C, which was previously reported for EPR and CD measurements (Boscolo et al. Biochim. Biophys. Acta 1774 (2007) 1164–1172), is not seen by calorimetry, suggesting that a local and not a global change in protein conformation produces this fluorescence change.  相似文献   

20.
In this study we compared the body temperature of 16 populations belonging to five species of the genus Cnemidophorus from restinga habitats along the eastern coast of Brazil in order to evaluate the importance of how some environmental factors affect lizard body temperatures. Cloacal body temperatures (Tb) were taken immediately after capture with a quick-reading thermometer (Schultheis). Substrate temperatures (Ts) and air temperatures (Ta; approximately 1 cm above the substrate) were taken as close as possible to the point when each lizard was initially sighted. Most of the mean body temperatures in activity of the different populations and species of Cnemidophorus along the coast of Brazil ranged from 36.5 to 39.3 °C, except for Cnemidophorus lacertoides (Tb=35.2 °C) in the restinga of Joaquina, SC and for Cnemidophorus ocellifer (Tb=34.8 °C ) in the restinga of Praia do Porto, SE. Some studies show that the body temperature of lizards is more related to phylogenetic than ecological factors, suggesting that species of the same genus tend to have similar body temperatures even occurring in different types of environments. In general, regardless of the locality and latitude along the eastern coast of Brazil, the different species of lizards of the genus Cnemidophorus and their respective populations have similar body temperatures in activity and the apparent differences result from the influence of the local thermal environment of each restinga.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号