首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of temperature acclimation and acute temperature change were investigated in postprandial green shore crabs, Carcinus maenas. Oxygen uptake, gut contractions and transit rates and digestive efficiencies were measured for crabs acclimated to either 10 °C or 20 °C and subsequently exposed to treatment temperatures of 5, 15, or 25 °C. Temperature acclimation resulted in a partial metabolic compensation in unfed crabs, with higher oxygen uptake rates measured for the 10 °C acclimated group exposed to acute test temperatures. The Q10 values were higher than normal, probably because the acute temperature change prevented crabs from fully adjusting to the new temperature. Both the acclimation and treatment temperature altered the characteristics of the specific dynamic action (SDA). The duration of the response was longer for 20 °C acclimated crabs and was inversely related to the treatment temperature. The scope (peak oxygen consumption) was also higher for 20 °C acclimated crabs with a trend towards an inverse relationship with treatment temperature. Since the overall SDA (energy expenditure) is a function of both duration and scope, it was also higher for 20 °C acclimated crabs, with the highest value measured at the treatment temperature of 15 °C. The decline in total SDA after acute exposure to 5 and 25 °C suggests that both cold stress and limitations to oxygen supply at the temperature extremes could be affecting the SDA response. The contractions of the pyloric sac of the foregut region function to propel digesta through the gut, and contraction rates increased with increasing treatment temperature. This translated into faster transit rates with increasing treatment temperatures. Although pyloric sac contractions were higher for 20 °C acclimated crabs, temperature acclimation had no effect on transit rates. This suggests that a threshold level in pyloric sac contraction rates needs to be reached before it manifests itself on transit rates. Although there was a correlation between faster transit times and the shorter duration of the SDA response with increasing treatment temperature, transit rates do not make a good proxy for calculating the SDA characteristics. The digestive efficiency showed a trend towards a decreasing efficiency with increasing treatment temperature; the slower transit rates at the lower treatment temperatures allowing for more efficient nutrient absorption. Even though metabolic rates of 10 °C acclimated crabs were higher, there was no effect of acclimation temperature on digestive efficiency. This probably occurred because intracellular enzymes and digestive enzymes are modulated through different control pathways. These results give an insight into the metabolic and digestive physiology of Carcinus maenas as it makes feeding excursions between the subtidal and intertidal zones.  相似文献   

2.
Previously, dry or semi-dry approach under the hypothermal condition is proved to be an alternative method in transport of live swimming crabs Portunus trituberculatus. However, we wondered whether this method can improve crab survival when temperature is kept as cool as possible. In this study, we hypothesized that there is a thermal threshold below which dry or semi-dry approach (air exposure) could cause crab physiological disruption and therefore aggravate their mortality. To test the above hypothesis, crabs (23 °C) were exposed to air at temperatures ranging from 4 to 16 °C. Results showed that crabs had a worse survival and vigor at temperatures below 12 °C. Then we tested crab energy metabolism to explore the possible reason. It was shown that total adenine nucleotide and adenylate energy charge in gills were remarkably reduced by air exposure of below 12 °C. This increased the need for crabs to re-balance energy metabolism, which was indicated by the upregulation of AMPKα and HIF-1α. Meanwhile, there was a significant increase of the expression of Na+/K+-ATPase, V-type ATPase and HSP90 at temperatures below 12 °C, while all treatments shared a similar level of hemocyanin, urate and lactate in hemolymph and expression of cytochrome c oxidase and NADH-ubiquinone reductase in gills. These results implied that dry or semi-dry approach below 12 °C could exert detrimental effects on P. trituberculatus, and perturbation of energy homeostasis, which is more related with changes of energy-demanding physiological pathways, is a possible reason of crab death and poor vigor.  相似文献   

3.
Ammonia-N toxicity to early Portunus pelagicus juveniles at different salinities was investigated along with changes to haemolymph osmolality, Na+, K+, Ca2+ and ammonia-N levels, ammonia-N excretion and gill Na+/K+-ATPase activity. Experimental crabs were acclimated to salinities 15, 30 and 45‰ for one week and 25 replicate crabs were subsequently exposed to 0, 20, 40, 60, 80, 100 and 120 mg L− 1 ammonia-N for 96-h, respectively. High ammonia-N concentrations were used to determine LC50 values while physiological measurements were conducted at lower concentrations. When crabs were exposed to ammonia-N, anterior gill Na+/K+-ATPase activity significantly increased (p < 0.05) at all salinities, while this only occurred on the posterior gills at 30‰. For crabs exposed to 20 and 40 mg L− 1 ammonia-N, both posterior gill Na+/K+-ATPase activity and ammonia-N excretion were significantly higher at 15‰ than those at 45‰. Despite this trend, the 96-h LC50 value at 15‰ (43.4 mg L− 1) was significantly lower (p < 0.05) than at both 30‰ and 45‰ (65.8 and 75.2 mg L− 1, respectively). This may be due to significantly higher (p < 0.05) haemolymph ammonia-N levels of crabs at low salinities and may similarly explain the general ammonia-N toxicity pattern to other crustacean species.  相似文献   

4.
Curculio sikkimensis undergoes prolonged larval diapause that is terminated by chilling and warming cycles. To examine the effects of warming temperatures and their duration on diapause termination, we exposed diapause larvae that had not been reactivated after chilling at 5 °C to 20 or 25 °C and chilled them again before incubation at 20 °C. With increasing warming duration at 20 °C, diapause termination after chilling increased and shorter chilling durations became effective. In contrast, few or no larvae warmed at 25 °C terminated diapause after chilling, irrespective of the warming duration. To investigate the effect of warming temperature on diapause intensity, larvae with diapause weakened by initial incubation at 20 °C after the first chilling were subsequently incubated at 15, 20, or 25 °C, then chilled at 5 °C before incubation at 20 °C. Diapause termination increased significantly after the larvae were treated at 15 or 20 °C but decreased significantly after they were treated at 25 °C. The intensification of prolonged diapause at 25 °C was reversed when the larvae were transferred to 20 °C. Diapause intensity in C. sikkimensis therefore decreases at 20 °C, increases at 25 °C, and can be reversed by alternately exposing diapause larvae to 20 and 25 °C. In C. sikkimensis, prolonged diapause does not always proceed in one direction, and its intensity fluctuates in response to ambient temperature conditions.  相似文献   

5.
Potential factors influencing sperm survival under hypertonic conditions were evaluated in the Sandhill crane (Grus canadensis) and turkey (Meleagridis gallopavo). Sperm osmotolerance (300-3000 mOsm/kg) was evaluated after: (1) equilibration times of 2, 10, 45 and 60 min at 4 °C versus 21 °C; (2) pre-equilibrating with dimethylacetamide (DMA) or dimethylsulfoxide (Me2SO) at either 4 °C or 21 °C; and (3) inhibition of the Na+/K+ and the Na+/H+ antiporter membrane ionic pumps. Sperm viability was assessed using the eosin-nigrosin live/dead stain. Species-specific differences occurred in response to hypertonic conditions with crane sperm remaining viable under extreme hypertonicity (3000 mOsm/kg), whereas turkey sperm viability was compromised with only slightly hypertonic (500 mOsm/kg) conditions. The timing of spermolysis under hypertonic conditions was also species-specific, with a shorter interval for turkey (2 min) than crane (10 min) sperm. Turkey sperm osmotolerance was slightly improved by lowering the incubation temperature from 21 to 4 °C. Pre-equilibrating sperm with DMA reduced the incidence of hypertonic spermolysis only in the crane, at both room and refrigeration temperature. Inhibiting the Na+/K+ and the Na+/H+ antiporter membrane ion pumps did not impair resistance of crane and turkey spermatozoa to hypertonic stress; pump inhibition actually increased turkey sperm survival compared to control sperm. Results demonstrate marked species specificity in osmotolerance between crane and turkey sperm, as well as in the way temperature and time of exposure affect sperm survival under hypertonic conditions. Differences are independent of the role of osmotic pumps in these species.  相似文献   

6.
The synthesis of thermosensitive copolymers based on pullulan and polyether amine was performed in water using a water-soluble carbodiimide and N-hydroxysuccinimide as activators. Jeffamine® M2005 was chosen as a polyether to impart thermosensitive character to the copolymer. Pullulan was modified into carboxymethylpullulan, to bring carboxylate groups to the polysaccharide so as to further the grafting reaction. The copolymers were characterized by FT-IR, 1H NMR spectroscopy and molecular weights measurements (by SEC coupled with MALS/DRI/Viscometer lines). The thermosensitive behaviour of CMP-g-M2005 copolymers was studied by fluorescence spectroscopy of pyrene, by rheometry and microDSC measurements. The sol-gel transition temperature was found dependent on the solvent, the grafting degree of M2005 and the concentration of the copolymer. For example it was 35 °C in water, 28 °C in acid buffer (0.1 M, pH 5.4) and 26 °C in saline phosphate buffer (0.15 M, pH 7.4) for a grafting degree of 0.20 at a concentration of 5 wt%.  相似文献   

7.
Ovigerous females of Cancer setosus are present year-round throughout most of its wide range along the Peruvian/Chilean Pacific coast (2°S-46°S). However, their number of egg-masses produced per year remains speculative and as such has neither been considered in latitudinal comparisons of reproduction, nor for its fisheries management. In order to reveal the effect of temperature on egg-mass production and egg-development, female C. setosus were held in through-flow aquaria under natural seasonal temperature conditions (16-23 °C) in Antofagasta (23°S), Northern Chile (05/2005-03/2006; 10 months), and at three constant temperatures (12, 16, 19 °C) in Puerto Montt (41°S), Central Southern Chile (09/2006-02/2007; 5 months). Female crabs uniformly produced up to 3 viable egg-masses within 4 1/2 months in Antofagasta and in Puerto Montt (at 19 °C). The second egg-mass was observed 62.5 days (± 7.6; N = 7) after the oviposition of the first clutch and a third egg-mass followed 73.5 days (± 12.5; N = 11) later in Antofagasta (at 16-23 °C). Comparably, a second oviposition took place 64.4 days (± 9.8, N = 5) after the first clutch and a third, 67.0 days (± 2.8, N = 2), thereafter, at 19 °C in Puerto Montt. At the two lower temperatures (16 and 12 °C) in Puerto Montt a second egg-mass was extruded after 82.8 days (± 28.9; N = 4) and 137 days (N = 1), respectively. The duration of egg-development from oviposition until larval hatching decreased from 65 days at 12.5 °C to 22.7 days at the observed upper temperature threshold of 22 °C. Based on the derived relationship between temperature and the duration of egg-development (y = 239.3175e− 0.107x; N = 21, r2 = 0.83) and data on monthly percentages of ovigerous females from field studies, the annual number of egg-masses of C. setosus was calculated. This analysis revealed an annual output of about one egg-mass close to the species northern and southern distributional limits in Casma (9°S) and Ancud (43°S), respectively, while at Coquimbo (29°S) about two and in Concepción (36°S) more than 3 egg-masses are produced per year.  相似文献   

8.
Polar amplification of global warming has led to an average 2 °C rise in air temperatures in parts of the polar regions in the last 50 years. Poikilothermic ectotherms that are found in these regions, such as Collembola and mites, may therefore be put under pressure by changing environmental conditions. However, it has also been suggested that the thermal sensitivity of invertebrates declines with higher latitudes and, therefore, that polar ectotherms may not be at risk. In the current study, the heat tolerance and physiological plasticity to heat stress of two well-studied Antarctic invertebrates, the collembolan, Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus, were investigated. Both species showed considerable heat tolerance, with each having an Upper Lethal Temperature (ULT) above 35 °C (1 h exposure). These species were also able to survive for over 43 d at 10 °C and for periods of 5–20 min at 40 °C. Across all experimental procedures, A. antarcticus possessed a somewhat greater level of heat tolerance than C. antarcticus. Water loss during short duration exposures did not differ between the two species at 30, 35 and 40 °C, suggesting that the greater tolerance of A. antarcticus over this timescale was not due to higher desiccation resistance. Physiological plasticity was investigated by testing for Rapid Heat Hardening (RHH) and long-term acclimation. RHH was observed to a small degree in both species at a warming rate of 0.5 °C min−1, and also 0.2 °C min−1 in A. antarcticus alone. Longer-term acclimation (1 week at 10 °C) did not enhance the heat tolerance of either species. Even with this limited physiological plasticity, the results of this study indicate that C. antarcticus and A. antarcticus have capacity in their heat tolerance to cope with current and future environmental extremes of high temperature.  相似文献   

9.
The binary complexation of Am3+, Cm3+and Eu3+ with citrate has been studied at I = 6.60 m (NaClO4), pcH 3.60 and in the temperatures range of 0-60 °C employing a solvent extraction technique with di-(2-ethylhexyl)phosphoric acid/heptane. Two complexes, MCit and , were formed at all temperatures. For the three metal ions, the log β101 was between 5.9 and 6.2 and log β102 between 10.2 and 10.6 at 25 °C. The thermodynamic parameters for the Am-Cit system have been calculated from the temperature dependence of the β101 and β102 values. Positive enthalpy and entropy values for the formation of both complexes are interpreted as due to the contributions from the dehydration of the metal ions exceeding the exothermic cation-anion pairing. The formation of the ternary complex M(EDTA)(Cit)4− (M = Cm and Eu) was measured to have large stability constants (log β111 between 20.9 and 24.4) at 25 and 60 °C. Time resolved laser luminescence spectroscopy and lifetime measurement data validated the nature of the complexes of Eu(III) formed in the presence of Cit and EDTA + Cit in 6.60 m (NaClO4) solution.  相似文献   

10.
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (− 1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol L− 1) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol L− 1). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl, SO42−) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol L− 1) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol L− 1). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, − 1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats s− 1 at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.  相似文献   

11.
Nitrification under changing salinities (0-9%), temperatures (6-50 °C), ammonia (0-5 g N L−1) and nitrite concentrations (0-0.4 g N L−1) was investigated in fixed-bed reactors. For all conditions ammonia oxidation rates (AOR) were lower than nitrite oxidation rates (NOR). AORs and NORs increased from 12.5 to 40 °C and were very low at 6 °C and almost zero at 50 °C. No recovery of nitrification was obtained after incubation at 50 °C, whereas nitrification was restorable after incubation at 6 °C. Ammonia concentrations of 5 g N L−1 or nitrite concentrations up to 0.125 g N L−1 decreased AOR to almost zero. AORs and NORs recovered if ammonia or nitrite was removed. At concentrations of 1 and 5 g N L−1 ammonia AOR and NOR were inhibited by 50%, whereas 27 mg N/L nitrite inhibited AOR by 50%.  相似文献   

12.
Far more attention has been given to the short-term lethal impacts of reduced dissolved oxygen on commercially important fish and crabs than to the long-term sublethal impacts on these same species, or on lower trophic levels. This study demonstrates that chronic, sublethal effects of hypoxia on the copepod Acartia tonsa, a critical component of many pelagic coastal food webs, can lead to significant decreases in population growth. The results of laboratory experiments conducted at 15 °C (winter) and 25 °C (summer), under conditions of normoxia (Controls), sublethal hypoxia (1.5 ml l 1) and lethal hypoxia (0.7 ml l 1) show that egg production female 1 day 1 was significantly lower at 0.7 ml l 1 compared to Controls at both temperatures, while egg production female 1 day 1 was significantly lower at 1.5 ml l 1 compared to controls in both summer experiments and in one of the two winter experiments. Survival was significantly decreased in the 0.7 ml l 1 treatment compared to Controls and the 1.5 ml l 1 treatment. Copepods developed more slowly and matured at smaller adult body sizes at both temperatures under both lethal and sublethal hypoxia compared to normoxia. Under summer temperatures, egg production was reduced by hypoxia exposure on two counts: (1) exposure to hypoxia during development resulted in smaller adults, which translated into lower egg production, and (2) egg production was still significantly lower in hypoxia treatments compared to Controls even when differences in body size were taken into account. While copepods collected in winter and exposed to winter temperatures and hypoxia also matured at smaller body sizes than copepods exposed to normoxia, egg production in winter was almost entirely attributable to this reduction in body size. These results suggest that coastal hypoxia may have a significantly greater impact in the summer months, when copepod populations are most abundant and growing at their most rapid rate of the year. With the anticipated increases in global temperatures, hypoxia may have even greater impacts on pelagic food webs.  相似文献   

13.
For Gossypium hirsutum pollination, germination, and pollen tube growth must occur in a highly concerted fashion on the day of flowering for fertilization to occur. Because reproductive success could be influenced by the photosynthetic activity of major source leaves, we hypothesized that increased temperatures under field conditions would limit fertilization by inhibiting diurnal pollen tube growth through the style and decreasing subtending leaf photosynthesis. To address this hypothesis, G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures while at the same developmental stage (node 8 above the cotyledons). Collection and measurement were conducted at 06:00, 09:00, 12:00, 15:00, and 18:00 h on August 4 (34.6 °C maximum air temperature) and 14, 2009 (29.9 °C maximum air temperature). Microclimate measurements included photosynthetically active radiation, relative humidity, and air temperature. Pistil measurements included pistil surface temperature, pollen germination, pollen tube growth through the style, fertilization efficiency, fertilized ovule number, and total number of ovules per ovary. Subtending leaf measurements included leaf temperature, photosynthesis, and stomatal conductance. Under high temperatures the first measurable pollen tube growth through the style was observed earlier in the day (12:00 h) than under cooler conditions (15:00 h). Also, high temperature resulted in slower pollen tube growth through the style (2.05 mm h−1) relative to cooler conditions (3.35 mm h−1), but there were no differences in fertilization efficiency, number of fertilized ovules, or ovule number. There was no effect of sampling date on diurnal photosynthetic patterns, where the maximum photosynthetic rate was observed at 12:00 h on both dates. It is concluded that, of the measured physiological and reproductive processes, pollen tube growth rate showed the greatest sensitivity to high temperature under field conditions.  相似文献   

14.
Combined effects of acclimation temperature (12, 20 and 28 °C) and exposure to a toxic metal cadmium (Cd, 50 μg L−1) on haemolymph parameters related to immune defense and metal transport were studied in a model marine bivalve, Crassostrea virginica. Acclimation to elevated temperatures resulted in higher plasma protein concentrations and increased Cd levels in oyster haemolymph plasma and haemocytes. Cd accumulation in haemocytes was linear over the 45 days of Cd exposure and accumulation rates were 0.10, 0.53 and 0.56 μg Cd g−1 dry mass at 12, 20 and 28 °C, respectively. Percentage of blood Cd burden associated with haemocytes increased with increasing temperatures from 13–20% at 12 °C to 26–47% at 20 and 28 °C suggesting a higher role for cellular Cd transport at elevated temperatures. Cd levels in gills and hepatopancreas were positively correlated with Cd concentration in haemocytes, but accumulation rates were considerably faster, so that after 45 days of exposure Cd levels in gills and hepatopancreas were >10–20 times higher than in haemocytes. As a result of slow Cd accumulation possibly reflecting fast haemocyte turnover rates and/or exocytosis of Cd-containing granules, haemocytes in Cd-exposed oysters did not reach threshold Cd burdens required to trigger apoptosis. This suggests that haemocyte viability is not likely to contribute to immunosuppression in the environmentally relevant Cd range. In contrast, elevated temperature (28 °C) resulted in a significant increase in the percentage of apoptotic haemocytes compared to 12 or 20 °C supporting the notion that 28 °C is physiologically stressful for C. virginica. Overall, our study demonstrates strong effects of environmental temperature on haemocyte viability and other important blood parameters such as plasma protein content and metal transport capability which may mask potential Cd effects at environmentally relevant exposure levels.  相似文献   

15.
Other than the hominin lineage, baboons are the diurnally active primates that have colonized the arid plains of Africa most successfully. While the hominin lineage adopted bipedalism before colonizing the open, dry plains, baboons retained a quadrupedal mode of locomotion. Because bipedalism has been considered to reduce the thermoregulatory stress of inhabiting open dry plains, we investigated how baboons cope with thermal loads and water restriction. Using implanted data loggers, we measured abdominal temperature every 5 min in six unrestrained baboons while they were exposed to simulated desert conditions (15 °C at night rising to 35 °C during the day, with and without extra radiant heating), or an ambient temperature of 22 °C. At 22 °C, core temperature averaged 37.9 °C and cycled nychthemerally by 1.7 °C. Mean, minimum, and maximum daily core temperatures in euhydrated baboons in the simulated desert environments did not differ from the temperatures displayed in the 22 °C environment, even when radiant heating was applied. At 22 °C, restricting water intake did not affect core temperature. During the desert simulations, maximum core temperature increased significantly on each day of water deprivation, with the highest temperatures (>40 °C) on the third day in the simulation that included radiant heat. When drinking water heated to 38 °C was returned, core temperature decreased rapidly to a level lower than normal for that time of day. We conclude that baboons with access to water can maintain homeothermy in the face of high air temperatures and radiant heat loads, but that a lack of access to drinking water poses a major threat to baboon homeothermy. We speculate that any competitive thermoregulatory advantage of bipedalism in early hominins was related to coping with water shortage in hot environments, and that their freed hands might have enabled them to transport enough water to avoid dangerous hyperthermia.  相似文献   

16.
Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van’t Hoff model. This yielded an isotonic cell volume of 378 μm3 and an osmotically inactive volume of 165 μm3. To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37 °C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21 °C of 0.18 μm atm−1 min−1. The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21 °C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol.  相似文献   

17.
In shallow coastal habitats scavenging netted whelks Nassarius reticulatus attached egg capsules to the stipes of red algae Chondrus crispus and occasionally on Furcellaria lumbricalis and Plumaria plumose. In the laboratory egg capsules were laid on aquaria sides and lids by individuals ≥ 21 mm shell length. Larger size classes produced more egg capsules and spawned over a longer period and in doing so partitioned less energy into shell growth. Large netted whelks (25-28.9 mm) produced larger capsules which contained significantly more and larger eggs than those produced by smaller individuals (21-24.9 mm). Egg capsule production continued throughout the year by regularly fed N. reticulatus held at ambient seawater temperatures. Egg production increased in the spring and summer with peak production during June (15 °C), decreased between August and October and resumed again during the winter (November to February at ∼ 7 °C). During the summer (15-16 °C) egg capsules were smaller and contained smaller eggs than those deposited during the winter (7-10 °C), although the number of eggs · capsule1 was similar. Enforced food limitation reduced the number and size of the egg capsules, the number and size of eggs produced · female1 and the duration of the breeding period. Hatching success of N. reticulatus egg capsules was high (95%) even at winter seawater temperatures (11-8.5 °C) and the duration of embryonic development was fastest between 15 and 17.5 °C.  相似文献   

18.
Lasia spinosa seeds were not dormant at maturity in early spring. The most favorable temperatures for germination were between 25 and 30 °C, and final percentage and rate of germination decreased with an increase or decrease in temperature. When L. spinosa seeds were transferred to 25 °C, after 60 days at 10 °C (where none of the seeds germinated), final germination increased from 0% to 78%. Seeds germinated to high percentage both in light and in dark, although dark germination took more than twice as long as in the light. During desiccation of seeds at 15 °C and 45% relatively humidity, moisture loss decreased exponentially from 2.02 to 0.13 g H2O g−1 dry wt within 16 days, and only a few seeds (12%) survived 0.13 g H2O g−1 dry wt moisture content. Seeds stored at 0.58 g H2O g−1 dry wt moisture content at four constant temperatures (4, 10, 15, and −18 °C) for up to 6 months exhibited a well-defined trend of decreasing viability with decreasing temperature. Thus, we concluded that freshly harvested L. spinosa seeds are non-dormant and recalcitrant. Also, the seeds with 0.58 g H2O g−1 dry wt moisture content could be effectively stored for a few months between 10 and 15 °C although the most appropriate temperature for wet storage appears to be 10 °C, as it is close to the minimum temperature for germination and so there will be less pre-sprouting compared to 15 °C.  相似文献   

19.
Hyperthermia is a promising treatment for carcinoma cells. The thermal injuries of two hepatoma carcinoma cell lines with the identical cytological grade, HepG2 and Hep3B cell lines, were investigated systematically in the present study. The homemade heating stage was used to provide a constant temperature between 40 and 70 °C for thermal treatment. When the cells were exposed to temperatures ranging from 40 to 45 °C, Hep3B cells had a lower thermotolerance than the HepG2 cells; however, the survival rate of these two cell lines was still high. The differences in thermotolerance between HepG2 and Hep3B cells were more significant at the range of 50–55 °C than those at lower-level temperatures of 40–45 °C. Furthermore, the viability of the cells was less than 10% when they were exposed to a supraphysiological temperature of 60 °C for 5 min; these cell lines suffered from injury saturation under that thermal treatment. The statistical analysis also concluded that Hep3B cells are more susceptible to heat stress than are the HepG2 cells when subjected to the thermal treatment applied in this work, the exception being when thermal injury saturation occurred. The kinematic parameters of the activation energy and frequency factor for HepG2 and Hep3B cells were also quantitatively determined herein. The activation energies (ΔE) for HepG2 and Hep3B cells were 170.17 and 152.44 kJ/mol, respectively. Furthermore, the frequency factors (A) for HepG2 and Hep3B cells were 4.11×1024 and 1.07×1022 s−1, respectively.  相似文献   

20.
Metabolic responses of sand fiddler crab, Uca pugilator, populations in northwest Florida are greatly influenced by seasonal temperature fluctuations. Crabs acclimated at 20 °C and immediately transferred to either 14 or 26 °C produced an acute metabolic response with respective temperature quotient (Q10) values of 3.46 and 3.91. Crabs acclimated at 10 and 20 °C exhibited a Q10 of 2.62 indicating a partial compensation response. A brumation (reverse) response (Q10 value of 20.11) was observed for acclimated crabs between 5 and 10 °C. Brumation is advantageous during winter when food supplies are scarce and crabs must survive extensive periods of inactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号