首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we report the general strategies by which NMR spectroscopy can be used to determine the enantiopurity and absolute configuration of chalcogen containing secondary alcohols, including the evaluation of the use of chiral solvating and chiral derivatizing agents. The BINOL/DMAP ternary complex demonstrated a simple and fast protocol for determining enantiopurity. The drug Naproxen afforded a stable, nonhygroscopic, and readily available chiral derivatizing agent (CDA) for NMR chiral discrimination of chalcogen containing secondary alcohols. The chiral recognition by CDA and chiral solvating agent (CSA) was assessed using 1H, 77Se‐{1H}, and 125Te‐{1H} NMR spectroscopy. A simple model for the assignment of the absolute configuration from NMR data is presented.  相似文献   

2.
The relative configuration of the pterin moiety of 5,6,7,8-tetrahydromethanopterin 1, a coenzyme isolated from methanogenic archaea, has been determined by two-dimensional NMR spectroscopy of N5,N10-methenyl-5,6,7,8-tetrahydromethanopterin 2 to be rel-(6R; 7S; 11R). The complete proton resonance assignment of the pterin moiety of N5,N10-methylene-5,6,7,8-tetrahydromethanopterin 3 is described including the relative stereospecific assignment of the C(14a) methylene protons.  相似文献   

3.
The application of the (31)P NMR spectroscopy to large proteins or protein complexes in solution is hampered by a relatively low intrinsic sensitivity coupled with large line widths. Therefore, the assignment of the phosphorus signals by two-dimensional NMR methods in solution is often extremely time consuming. In contrast, the quality of solid-state NMR spectra is not dependent on the molecular mass and the solubility of the protein. For the complex of Ras with the GTP-analogue GppCH(2)p we show solid-state (31)P NMR methods to be more sensitive by almost one order of magnitude than liquid-state NMR. Thus, solid-state NMR seems to be the method of choice for obtaining the resonance assignment of the phosphorus signals of protein complexes in solution. Experiments on Ras.GDP complexes show that the microcrystalline sample can be substituted by a precipitate of the sample and that unexpectedly the two structural states observed earlier in solution are present in crystals as well.  相似文献   

4.
Allenmark S  Gawronski J 《Chirality》2008,20(5):606-608
Rapid progress in asymmetric synthesis stimulated a further development of methods and techniques for the determination of absolute configuration of chiral molecules. In recent years the direct methods, i.e. X-ray diffraction analysis, circular dichroism (vibrational and electronic), Raman optical activity, optical rotation measurements, as well as indirect methods for relative configuration assignment with the use of NMR spectroscopy or enzymatic transformations, are receiving increasing attention not only by specialists in the field but also by synthetic and structural chemists alike. This paper provides a short overview of the methods currently used, as well as references to contributions collected in this Thematic Issue of Chirality.  相似文献   

5.
Dehydration of 4-(D-galacto-pentitol-1-yl)-2-phenyl-2H-1,2,3-triazole with 20% methanolic sulfuric acid afforded the anomeric pairs of nucleosides, 4-(alpha-D-lyxopyranosyl)-2-phenyl-2H-1,2,3-triazole (major component) and its beta-anomer, as well as 4-(alpha-D-lyxofuranosyl)-2H-1,2,3-triazole and its beta-anomer. The four anomeric C-nucleosides were separated by chromatography, and their structure and anomeric configuration were determined by periodate oxidation, acylation, and NMR spectroscopy as well as mass spectrometry. The anomeric assignment from optical rotation was not in agreement with final structure assignment and represented a violation of the Hudson isorotation rules. NOE studies and X-ray diffraction measurements confirmed the anomeric configuration.  相似文献   

6.
Abstract

The stereochemical assignment of dinucleoside-S-p-nitrobenzyl-phosphorothioates by NMR spectroscopy is reported. It was found that the method based on the difference of the vicinal phosphorus-carbon coupling constants (δJ =3JC4′,p-3JC2′,p) can widely be applied for the determination of the configuration at the pohosphorus atom in phosphate-modified dideoxynucleotides.  相似文献   

7.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

8.
NMR spectroscopy techniques have been used to determine the conformation of DG35-VIII in DMSO, acetone, and methanol. COSY and Heteronuclear Correlation experiments were used to confirm the proton spectral assignments. NOESY experiments were used to identify proton internuclear distances which were used to determine the 3D structure. The NOESY data identified a single "U-shaped" conformer of DG35-VIII in acetone, and an alternate "extended" conformer in methanol and two possible conformations in DMSO. Restrained molecular minimization methods using the Molecular Mechanics Program "DISCOVER" and "DYANA" were used to determine a low energy structure consistent with the NMR data. The extended structure of DG35-VIII was compared with closely related HIV protease inhibitors (VX-478 and ABT-538) and showed similar backbone structures, with the functional isostere groups superimposed on each other. The binding energy of DG35-VIII with HIV protease was examined and found to be comparable with VX-478 and ABT-538.  相似文献   

9.
The increasingly recognized biological relevance of intrinsically disordered proteins requires a continuous expansion of the tools for their characterization via NMR spectroscopy, the only technique so far able to provide atomic-resolution information on these highly mobile macromolecules. Here we present the implementation of projection spectroscopy in 13C-direct detected NMR experiments to achieve the sequence specific assignment of IDPs. The approach was used to obtain the complete backbone assignment at high temperature of α-synuclein, a paradigmatic intrinsically disordered protein.  相似文献   

10.
Q X Hua  M A Weiss 《Biochemistry》1991,30(22):5505-5515
The solution structure and dynamics of human insulin are investigated by 2D 1H NMR spectroscopy in reference to a previously analyzed analogue, des-pentapeptide(B26-B30) insulin (DPI; Hua, Q.X., & Weiss, M.A. (1990) Biochemistry 29, 10545-10555). This spectroscopic comparison is of interest since (i) the structure of the C-terminal region of the B-chain has not been determined in the monomeric state and (ii) the role of this region in binding to the insulin receptor has been the subject of long-standing speculation. The present NMR studies are conducted in the presence of an organic cosolvent (20% acetic acid), under which conditions both proteins are monomeric and stably folded. Complete sequential assignment of human insulin is obtained and leads to the following conclusions. (1) The secondary structure of the insulin monomer (three alpha-helices and B-chain beta-turn) is similar to that observed in the 2-Zn crystal state. (2) The folding of DPI is essentially the same as the corresponding portion of intact insulin, in accord with the similarities between their respective crystal structures. However, differences between insulin and DPI are observed in the extent of conformational broadening of amide resonances, indicating that the presence or absence of residues B26-B30 influences the overall dynamics of the protein on the millisecond time scale. (3) Residues B24-B28 adopt an extended configuration in the monomer and pack against the hydrophobic core as in crystallographic dimers; residues B29 and B30 are largely disordered. This configuration differs from that described in a more organic milieu (35% acetonitrile; Kline, A.D., & Justice, R.M., Jr. (1990) Biochemistry 29, 2906-2913), suggesting that the conformation of insulin in the latter study may have been influenced by solvent composition. (4) The insulin fold is shown to provide a model for collective motions in a protein with implications for the mechanism of protein-protein recognition. To our knowledge, this paper describes the first detailed analysis of a protein NMR spectrum under conditions of extensive conformational broadening. Such an analysis is made possible in the present case by comparative study of an analogue (DPI) with more tractable spectroscopic properties.  相似文献   

11.
The accumulation of 2-deoxy-D-glucose-6-phosphate (2DG6P), detected using 31P NMR spectroscopy, has been used as a measure of the rate of glucose uptake, yet the accuracy of this measurement has not been verified. In this study, isolated rat hearts were perfused with different substrates or isoproterenol for 30 min before measurement of either 2DG6P accumulation or [2-3H]glucose uptake, without and with insulin. Basal contractile function and metabolite concentrations were the same for all hearts. The basal rates of 2DG6P accumulation differed significantly, depending on the preceding perfusion protocol, and were 38-60% of the [2-3H]glucose uptake rates, whereas insulin-stimulated 2DG6P accumulation was the same or 71% higher than the [2-3H]glucose uptake rates. Therefore the ratio of 2DG6P accumulation/[2-3H]glucose uptake rates varied from 0.38 to 1.71, depending on the prior perfusion conditions or the presence of insulin. The rates of 2DG6P hydrolysis were found to be proportional to the intracellular 2DG6P concentrations, with a K(m) of 17.5mM and V(max) of 1.4 micromol/g dry weight/min. We conclude that the rates of 2DG6P accumulation do not accurately reflect glucose uptake rates under all physiological conditions in the isolated heart and should be used with caution.  相似文献   

12.
An NMR investigation of proteins with known X-ray structures is of interest in a number of endeavors. Performing these studies through nuclear magnetic resonance (NMR) requires the costly step of resonance assignment. The prevalent assignment strategy does not make use of existing structural information and requires uniform isotope labeling. Here we present a rapid and cost-effective method of assigning NMR data to an existing structure—either an X-ray or computationally modeled structure. The presented method, Exhaustively Permuted Assignment of RDCs (EPAR), utilizes unassigned residual dipolar coupling (RDC) data that can easily be obtained by NMR spectroscopy. The algorithm uses only the backbone N–H RDCs from multiple alignment media along with the amino acid type of the RDCs. It is inspired by previous work from Zweckstetter and provides several extensions. We present results on 13 synthetic and experimental datasets from 8 different structures, including two homodimers. Using just two alignment media, EPAR achieves an average assignment accuracy greater than 80%. With three media, the average accuracy is higher than 94%. The algorithm also outputs a prediction of the assignment accuracy, which has a correlation of 0.77 to the true accuracy. This prediction score can be used to establish the needed confidence in assignment accuracy.  相似文献   

13.
The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure.  相似文献   

14.
Two-dimensional nuclear magnetic resonance (NMR) spectroscopy in combination with distance geometry (DG) and dynamical simulated annealing (DSA) calculations have been used to determine the tertiary solution structure of a synthetic 29-residue fragment of von Willebrand factor (vWF). This fragment (D514-E542) represents an adhesion site on vWF for its platelet receptor, the glycoprotein Ib-IX complex (GP Ib-IX). The NMR data yielded 109 interproton distance measurements and two chi 1 dihedral angle constraints for use in DG and DSA calculations. Most prominent in the calculated family of solution structures was an amphipathic, right-handed alpha-helix in the C-terminal segment of the peptide. We propose that this highly structured region may be important for the specific molecular interaction of vWF with the GP Ib-IX complex.  相似文献   

15.
A new strategy for the simultaneous NMR assignment of both backbone and side chain amides in large proteins with isotopomer-selective transverse-relaxation-optimized spectroscopy (IS-TROSY) is reported. The method considers aspects of both the NMR sample preparation and the experimental design. First, the protein is dissolved in a buffer with 50%H2O/50%D2O in order to promote the population of semideuterated NHD isotopomers in side chain amides of Asn/Gln residues. Second, a 13C′-coupled 2D 15N–1H IS-TROSY spectrum provides a stereospecific distinction between the geminal protons in the E and Z configurations of the carboxyamide group. Third, a suite of IS-TROSY-based triple-resonance NMR experiments, e.g. 3D IS-TROSY-HNCA and 3D IS-TROSY-HNCACB, are designed to correlate aliphatic carbon atoms with backbone amides and, for Asn/Gln residues, at the same time with side chain amides. The NMR assignment procedure is similar to that for small proteins using conventional 3D HNCA/3D HNCACB spectra, in which, however, signals from NH2 groups are often very weak or even missing due to the use of broad-band proton decoupling schemes and NOE data have to be used as a remedy. For large proteins, the use of conventional TROSY experiments makes resonances of side chain amides not observable at all. The application of IS-TROSY experiments to the 35-kDa yeast cytosine deaminase has established a complete resonance assignment for the backbone and stereospecific assignment for side chain amides, which otherwise could not be achieved with existing NMR experiments. Thus, the development of IS-TROSY-based method provides new opportunities for the NMR study of important structural and biological roles of carboxyamides and side chain moieties of arginine and lysine residues in large proteins as well as amino moieties in nucleic acids.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

16.
(1)H NMR spectroscopy of cerebrospinal fluid (CSF) is currently being used to study metabolic profiles characteristic of distinct multiple sclerosis (MS) manifestations. For select MS patient groups, we have previously detected significantly increased concentrations of several identified metabolites and one unidentified compound. We now present, for the first time, the identification of the latter molecule, beta-hydroxyisobutyrate (BHIB). A combination of dedicated 1D and 2D (1)H NMR experiments was employed for signal assignment. To our knowledge, BHIB has not previously been identified in (1)H NMR spectra of biofluids or biological tissues. Our assignment suggests new biochemical pathways involved in specific MS pathologies.  相似文献   

17.
The 13C NMR data of 51 iridoid glucosides or glucoside acetates are tabulated. The collection includes 20 pairs of C-6, C-7 or C-8 epimers. Three parameters in using the data for the configurational assignment of 6-O-substituents are given. The chemical shift for C-9 in a range of substituted compounds is shown to be numerically related to the stereochemistry at C-8. This allows the determination of the configuration at this centre for most types of substitution patterns by calculation of the C-9 shift using increments for each substituent. Such increments are given for 25 substituents in three different solvents. A method for simulation of spectra of unknown iridoid glucosides is presented. By this method, the structures of five novel iridoid glucosides have been elucidated, and that of tecomoside has been revised. The methods used to assign the configurations to C-6 and C-8 epimeric iridoid glucosides by 1H NMR spectroscopy are discussed and a table with selected data is presented. It is suggested that the structures in the literature for ajugol and myoporoside should be interchanged. Consequently, Horeau's method has failed in these instances. Finally, the differences in the 13C NMR spectra of pairs of C-6 and C-8 epimeric iridoid glucosides have been interpreted as originating from cis/trans-interactions.  相似文献   

18.
The conformations of the neuropeptide galanin in water and trifluoroethanol solutions have been examined by 1H NMR spectroscopy. Analysis of two-dimensional NMR experiments enabled the assignment of virtually all the 1H resonances of galanin in trifluoroethanol solution and many of the 1H resonances in aqueous solution. Interpretation of the NMR data in structural terms suggests that in trifluoroethanol galanin is predominantly helical while in water it does not adopt a fixed conformation.  相似文献   

19.
Xu Y  Zheng Y  Fan JS  Yang D 《Nature methods》2006,3(11):931-937
So far high-resolution structure determination by nuclear magnetic resonance (NMR) spectroscopy has been limited to proteins <30 kDa, although global fold determination is possible for substantially larger proteins. Here we present a strategy for assigning backbone and side-chain resonances of large proteins without deuteration, with which one can obtain high-resolution structures from (1)H-(1)H distance restraints. The strategy uses information from through-bond correlation experiments to filter intraresidue and sequential correlations from through-space correlation experiments, and then matches the filtered correlations to obtain sequential assignment. We demonstrate this strategy on three proteins ranging from 24 to 65 kDa for resonance assignment and on maltose binding protein (42 kDa) and hemoglobin (65 kDa) for high-resolution structure determination. The strategy extends the size limit for structure determination by NMR spectroscopy to 42 kDa for monomeric proteins and to 65 kDa for differentially labeled multimeric proteins without the need for deuteration or selective labeling.  相似文献   

20.
E R Zuiderweg  S W Fesik 《Biochemistry》1989,28(6):2387-2391
The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of 1H and 15N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with 15N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the 15N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that 15N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号