首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function – seed production – did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites.  相似文献   

2.
It is debated whether alien plants in new environments benefit from being mycorrhizal and whether widely distributed natives and aliens differ in their associations with mycorrhizal fungi. Here, we compared whether species differing in their origin status, i.e. natives, archaeophytes (alien species introduced before the year 1500) and neophytes (introduced after the year 1500), and arbuscular mycorrhizal (AM) status (obligate, facultative, non‐mycorrhizal) differ in their area of occupancy in Germany (i.e. number of occupied grid cells, each ~130 km²). We used generalized linear models, incorporating main effects and up to three‐way interactions combining AM status, origin status and plant functional traits. The latter were chosen to describe the possible trade‐off in carbon allocation either towards the symbiosis or to other plant structures, such as storage organs (significant interactions involving traits were assumed to indicate the existence of such trade‐offs). AM status significantly explained the area of occupancy of natives and neophytes – with facultative mycorrhizal species occupying the largest area in both groups – but was less pronounced among archaeophytes. Archaeophytes may have reduced dependency on AM fungi, as they are generally agricultural weeds and the symbiosis potentially becomes obsolete for plants growing in habitats providing a steady provision of nutrients. Trait interactions between AM status and other functional traits were almost exclusively detected for neophytes. While facultative mycorrhizal neophytes benefit from trade‐offs with other traits related to high C cost in terms of area of occupancy, such trade‐offs were almost absent among natives. This indicates that natives and neophytes benefit differently from the symbiosis and suggests that native AM fungal partners might be less important for neophytic than for native plant species or that more time is required to establish similar relationships between neophytes and native fungal symbionts.  相似文献   

3.
Plant roots interact with a wide variety of rhizospheric microorganisms, including bacteria and the symbiontic arbuscular mycorrhizal (AM) fungi. The mycorrhizal symbiosis represents a series of complex feedbacks between plant and fungus regulated by their physiology and nutrition. Despite the widespread distribution and ecological significance of AM symbiosis, little is known about the potential of AM fungi to affect plant VOC metabolism. The purpose of this study was to investigate whether colonization of plant roots by AM fungi and associated soil microorganisms affects VOC emission and content of Artemisia annua L. plants (Asteraceae). Two inoculum types were evaluated: one consisted of only an arbuscular mycorrhizal (AM) fungus species (Glomus spp.), and the other was a mixture of different Glomus species and associated soil bacteria. Inoculated plants were compared with non-inoculated plants and with plants supplemented with extra phosphorus (P) to obtain plants of the same size as mycorrhizal plants, thus excluding potentially-confounding mycorrhizal effects on shoot growth. VOC emissions of Artemisia annua plants were analyzed by leaf cuvette sampling followed by off-line measurements with pre-concentration and gas chromatography mass spectrometry (GC-MS). Measurements of CO(2) and H(2)O exchanges were conducted simultaneously. Several volatile monoterpenes were identified and characterized from leaf emissions of Artemisia annua L. by GC-MS analysis. The main components identified belong to different monoterpene structures: alpha-pinene, beta-pinene, camphor, 1,8-cineole, limonene, and artemisia ketone. A good correlation between monoterpene leaf concentration and leaf emission was found. Leaf extracts included also several sesquiterpenes. Total terpene content and emission was not affected by AM inoculation with or without bacteria, while emission of limonene and artemisia ketone was stimulated by this treatment. No differences were found among treatments for single monoterpene content, while accumulation of specific sesquiterpenes in leaves was altered in mycorrhizal plants compared to control plants. Growth conditions seemed to have mainly contributed to the outcome of the symbiosis and influenced the magnitude of the plant response. These results highlight the importance of considering the below-ground interaction between plant and soil for estimating VOC emission rates and their ecological role at multitrophic levels.  相似文献   

4.
? Premise of the study: Polyploidy has been shown to affect different plant traits and modulate interactions between plants and other organisms, such as pollinators and herbivores. However, no information is available on whether it can also shape the functioning of mycorrhizal symbiosis. ? Methods: The mycorrhizal growth response was assessed for three angiosperms with intraspecific ploidy variation. Different cytotypes of Aster amellus, Campanula gentilis, and Pimpinella saxifraga were either left uninoculated or were inoculated with arbuscular mycorrhizal (AM) fungi in a pot experiment. After 3 mo of cultivation in a greenhouse, plant growth, phosphorus concentration in the shoot biomass, and development of the AM symbiosis were evaluated. ? Key results: No significant ploidy-specific differences in AM development were recorded. The inoculation led to consistently greater phosphorus uptake; however, the effect on plant growth differed considerably among plant species, populations, ploidy levels, and AM species. A salient ploidy-specific response was observed in A. amellus. Whereas diploid plants benefited from AM inoculation, the hexaploids consistently showed negative or no-growth responses (depending on the AM species). In contrast to A. amellus, no interactions between inoculation and ploidy were observed in C. gentilis and P. saxifraga. ? Conclusions: The first evidence is provided of a ploidy-specific response of a mycotrophic plant to AM fungi. Our results demonstrate the complexity of interaction between plants and associated AM fungi, with the ploidy level of the host plant being one component that may modulate the functioning of the symbiosis.  相似文献   

5.
Although strigolactones play a critical role as rhizospheric signaling molecules for the establishment of arbuscular mycorrhizal (AM) symbiosis and for seed germination of parasitic weeds, scarce data are available about interactions between AM fungi and strigolactones. In the present work, we present background data on strigolactones from studies on their seed germination activity on the parasitic weeds Orobanche and Striga, the importance of nitrogen and phosphorus for this seed germination activity, and what this could mean for AM fungi. We also present results on the susceptibility of plants to AM fungi and the possible involvement of strigolactones in this AM susceptibility and discuss the role of strigolactones for the formation and the regulation of the AM symbiosis as well as the possible implication of these compounds as plant signals in other soil-borne plant–microbe interactions.  相似文献   

6.
Distribution of different mycorrhizal classes on Mount Koma, northern Japan   总被引:2,自引:0,他引:2  
Tsuyuzaki S  Hase A  Niinuma H 《Mycorrhiza》2005,15(2):93-100
To investigate the role of mycorrhizae in nutrient-poor primary successional volcanic ecosystems, we surveyed mycorrhizal frequencies on the volcano Mount Koma (42°04N, 140°42E, 1,140 m elevation) in northern Japan. After the 1929 eruptions, plant community development started at the base of the volcano. Ammonia and nitrate levels, along with plant cover, decreased with increasing elevation, whereas phosphorus did not. In total, 305 individuals of 56 seed plant species were investigated in three elevational zones (550–600 m, 650–700 m, and 750–800 m). Five mycorrhizal classes were classified based on morphological traits: ecto- (ECM), arbuscular (AM), arbutoid, ericoid, and orchid mycorrhiza. All plant species were mycorrhizal to at least some extent, with most widespread tree species being heavily ectomycorrhizal. In addition, of 16 tree species collected in all three zones, 6 differed in the frequencies of ECM on roots between elevational zones, and 3 of these 6 species increased in frequency with increasing elevation. These results suggest that ECM colonization in some tree species is related to establishment in nutrient-poor habitats. All species of Ericaceae and Pyrolaceae had ericoid mycorrhizae, and an Orchidaceae species had orchid mycorrhizae. Herbaceous species, except for the low mycorrhizal frequency of Carex oxyandra and two Polygonaceae species, and ericoid and orchid mycorrhizal species, were generally AM. Of herbaceous species, Anaphalis margaritacea var. angustior increased AM frequency and decreased ECM frequency with increasing elevation, and Hieracium umbellatum increased ECM frequency. In total, the establishment of herbaceous species was not sufficiently explained by AM colonization on roots. Tree individuals developed 2–3 classes of mycorrhizae more than herbs at each elevational zone. We conclude that the symbiosis between seed plants and mycorrhizae, ECM in particular, greatly influences plant community structures on Mount Koma. Not only a single mycorrhizal class, but combinations of mycorrhizal classes should be studied to clarify effects on plant community dynamics.  相似文献   

7.
The hypothesis that plant species are more responsive to mycorrhiza in late than in early successional stages was assessed in grasses from a successional process occurring in two-phase mosaics from the Mexican Chihuahuan Desert. We estimated the density of spores of arbuscular mycorrhizal (AM) fungi and the AM colonization of pioneer and late-successional grasses in the field. In growth chamber experiments, we tested the effect of the native AM fungal community on grasses growing in soils from different successional stages. Spore density was higher in late than in early successional stages. Late-successional species were more responsive to AM (positive AM responsiveness) whereas pioneer species were nondependent on mycorrhiza or if associated to AM fungi, the interaction showed a negative AM responsiveness for the seedling stage. Our findings showed that late successional species fitted the proposed models of mycorrhizal performance, but the two pioneer species differed in their AM condition and responsiveness. This further supports the idea that AM interactions are more complex along the successional processes than the predictions of the more widely cited hypotheses.  相似文献   

8.
Broomrapes (Orobanche and Phelipanche spp) are parasitic plants responsible for important crop losses, and efficient procedures to control these pests are scarce. Biological control is one of the possible strategies to tackle these pests. Arbuscular Mycorrhizal (AM) fungi are widespread soil microorganisms that live symbiotically with the roots of most plant species, and they have already been tested on sorghum for their ability to reduce infestation by witchweeds, another kind of parasitic plants. In this work AM fungi were evaluated as potential biocontrol agents against Orobanche cumana, a broomrape species that specifically attacks sunflower. When inoculated simultaneously with O. cumana seeds, AM fungi could offer a moderate level of protection against the broomrape. Interestingly, this protection did not only rely on a reduced production of parasitic seed germination stimulants, as was proposed in previous studies. Rather, mycorrhizal root exudates had a negative impact on the germination of O. cumana induced by germination stimulants. A similar effect could be obtained with AM spore exudates, establishing the fungal origin of at least part of the active compounds. Together, our results demonstrate that AM fungi themselves can lead to a reduced rate of parasitic seed germination, in addition to possible effects mediated by the mycorrhizal plant. Combined with the other benefits of AM symbiosis, these effects make AM fungi an attractive option for biological control of O. cumana.  相似文献   

9.
Sex-specific interactions with herbivores and pollinators have been observed in female and male plants of dioecious species. However, only a limited number of studies have revised sex-specific patterns in mycorrhizal symbiosis. To test whether female and male plants of Antennaria dioica differ in their relationship with arbuscular mycorrhizal (AM) fungi, we examined the temporal and spatial variation in AM fungi in female, male and non-reproductive A. dioica plants in three natural populations in Finland during flowering and after seed production. Our results are consistent with previous studies both under greenhouse and field conditions with the same species showing differences in AM colonization between the sexes linked with allocation to reproduction. Taken together, the results indicate that there is a sex-specific interaction between A. dioica and AM fungi. Overall, females have a greater investment in AM fungi, likely to enhance their uptake of soil nutrients and support the reproduction by seed.  相似文献   

10.
Development of arbuscular mycorrhizal (AM) symbiosis with plant root system in term of molecular and cellular events have been analysed. A role of AM symbiosis in plant life has been discussed. Molecular methods for analysis of arbuscular mycorrhizal fungi have been described.  相似文献   

11.
Abstract

Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.  相似文献   

12.
福建红树林植物丛枝菌根侵染研究   总被引:1,自引:0,他引:1  
2010年5月和12月,对福建沿海3个红树林生长区(洛阳江、九龙江口、漳江口)的红树林植物丛枝菌根(AM)侵染状况进行研究。结果表明:(1)红树林生长区中6种植物根内均发现AMF侵染结构,其中桐花树、秋茄、鱼藤和芦苇的丛枝为Arum(疆南星)型;(2)6种植物的丛枝菌根侵染率差异较大,老鼠簕的侵染率最高,鱼藤最低;(3)桐花树和秋茄的丛枝菌根侵染率呈显著差异,而其在不同生长区之间无差异;(4)桐花树和秋茄的丛枝菌根侵染率在不同时间呈显著差异,而钝草的丛枝菌根侵染率在不同时间的差异不显著。  相似文献   

13.
植物菌根共生磷酸盐转运蛋白   总被引:1,自引:0,他引:1  
大多数植物能和丛枝菌根(arbuscular mycorrhiza, AM)真菌形成菌根共生体。AM能够促进植物对土壤中矿质营养的吸收,尤其是磷的吸收。磷的吸收和转运由磷酸盐转运蛋白介导。总结了植物AM磷酸盐转运蛋白及其结构特征,分析其分类及系统进化,并综述了AM磷酸盐转运蛋白介导的磷的吸收和转运过程及其基因的表达调控。植物AM磷酸盐转运蛋白属于Pht1家族成员,它不仅对磷的吸收和转运是必需的,而且对AM共生也至关重要,为进一步了解菌根形成的分子机理及信号转导途径提供了理论基础。  相似文献   

14.
Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land plant species, and developing extensive, below-ground extraradical hyphae fundamental for the uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, they are able to colonize and interconnect contiguous plants by means of hyphae extending from one root system to another. Such hyphae may fuse due to the widespread occurrence of anastomoses, whose formation depends on a highly regulated mechanism of self recognition. Here, we examine evidences of self recognition and non-self incompatibility in hyphal networks formed by AM fungi and discuss recent results showing that the root systems of plants belonging to different species, genera and families may be connected by means of anastomosis formation between extraradical mycorrhizal networks, which can create indefinitely large numbers of belowground fungal linkages within plant communities.Key Words: arbuscular mycorrhizal symbiosis, extraradical mycelium, anastomosis, plant interconnectedness, self recognition, non-self incompatibility, mycorrhizal networks  相似文献   

15.
Considered to play an important role in plant mineral nutrition, arbuscular mycorrhizal (AM) symbiosis is a common relationship between the roots of a great majority of plant species and glomeromycotan fungi. Its effects on the plant host are highly context dependent, with the greatest benefits often observed in phosphorus (P)‐limited environments. Mycorrhizal contribution to plant nitrogen (N) nutrition is probably less important under most conditions. Moreover, inasmuch as both plant and fungi require substantial quantities of N for their growth, competition for N could potentially reduce net mycorrhizal benefits to the plant under conditions of limited N supply. Further compounded by increased belowground carbon (C) drain, the mycorrhizal costs could outweigh the benefits under severe N limitation. Using a field AM fungal community or a laboratory culture of Rhizophagus irregularis as mycorrhizal inoculants, we tested the contribution of mycorrhizal symbiosis to the growth, C allocation, and mineral nutrition of Andropogon gerardii growing in a nutrient‐poor substrate under variable N and P supplies. The plants unambiguously competed with the fungi for N when its supply was low, resulting in no or negative mycorrhizal growth and N‐uptake responses under such conditions. The field AM fungal communities manifested their potential to improve plant P nutrition only upon N fertilization, whereas the Rirregularis slightly yet significantly increased P uptake of its plant host (but not the host's growth) even without N supply. Coincident with increasing levels of root colonization by the AM fungal structures, both inoculants invariably increased nutritional and growth benefits to the host with increasing N supply. This, in turn, resulted in relieving plant P deficiency, which was persistent in non‐mycorrhizal plants across the entire range of nutrient supplies.  相似文献   

16.

Aims

Nutrients play a key role in arbuscular mycorrhizal (AM) symbiosis. We quantified the response of AM symbiosis of seedlings and adult plants of Plantago lanceolata to fertilization under field conditions in managed grasslands differing in nutrient availability and soil moisture.

Methods

The AM symbiosis was measured as the total extent of AM fungal colonization and frequency of arbuscules or vesicles, and as the relative proportions of morphotypes. We further examined the effects of the surrounding vegetation upon AM symbiosis.

Results

Fertilization decreased total AM colonization and relative arbuscular frequency of the whole mycorrhizal community and of Acaulospora and “fine endophyte” morphotypes in seedling roots, but it had no effect upon the mycorrhiza in adult plants. The decline in arbuscular frequency in seedling roots due to fertilization was greater at the sites with higher nutrient availability and lower N:P ratio. Seedlings surrounded by more forbs had a greater total AM colonization and higher vesicular frequency.

Conclusions

Increased nutrient availability in the initial stages of seedling development has a prominent effect upon AM symbiosis development, but these effects seem to diminish over the long term, as evidenced by the results obtained for adult plants and from the limited effects of parameters characterizing long-term nutrient availability.  相似文献   

17.
The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses   总被引:14,自引:0,他引:14  
Abstract Most land plant species that have been examined exist naturally with a higher fungus living in and around their roots in a symbiotic partnership called a mycorrhiza. Several types of mycorrhizal symbiosis exist, defined by the host/partner combination and the morphology of the symbiotic structures. The arbuscular mycorrhiza (AM) is ancient and may have co-evolved with land plants. Emerging results from gene expression studies have suggested that subsets of AM genes were co-opted during the evolution of other biotrophic symbioses. Here we compare the roles of phytohormones in AM symbiosis and ectomycorrhizas (EC), a more recent symbiosis. To date, there is little evidence of physiologic overlap between the two symbioses with respect to phytohormone involvement. Research on AM has shown that cytokinin (CK) accumulation is specifically enhanced by symbiosis throughout the plant. We propose a pathway of events linking enhanced CK to development of the AM. Additional and proposed involvement of other phytohormones are also described. The role of auxin in EC symbiosis and recent research advances on the topic are reviewed. We have reflected the literature bias in reporting individual growth regulator effects. However, we consider that gradients and ratios of these molecules are more likely to be the causal agents of morphologic changes resulting from fungal associations. We expect that once the individual roles of these compounds are explained, the subtleties of their function will be more clearly addressed.  相似文献   

18.
姚青  朱红惠  王栋  李良秋 《生态学报》2006,26(7):2288-2293
AM真菌能够影响植物生态系统的群落结构.以亚热带草地生态系统为研究对象,调查了两块草地中优势种和从属种的菌根,并在盆栽试验中比较了优势种和从属种对AM真菌的土著菌种和外源菌种Glomus mosseae的生长反应、养分吸收.结果表明,两块草地各自的优势种藿香蓟和两耳草对土著菌种的菌根依赖性分别是41.5%和77.4%,远远高于从属种莎草和毛蓼(16.0%和7.9%);但是它们对Glomus mosseae的菌根依赖性有所变化,分别是79.6%、44.2%、74.1%和24.9%.这表明,土著菌种是优势种和从属种的形成机制之一,而外源菌种可能改变基于土著菌种而形成的植物群落结构.植株磷营养的分析结果表明,AM真菌对优势种和从属种生长的促进与对磷吸收的促进高度相关,表明AM真菌促进养分吸收是其影响植物群落结构的机制之一.  相似文献   

19.
The hypothesis of the present study was that bacterial communities would differentiate under Eucalyptus camaldulensis and that an enhancement of arbuscular mycorrhizal (AM) density would minimize this exotic plant species effect. Treatments consisted of control plants, preplanting fertilizer application and AM inoculation. After 4 months of culture in autoclaved soil, E. camaldulensis seedlings were either harvested for growth measurement or transferred into containers filled with the same soil but not sterilized. Other containers were kept without E. camaldulensis seedlings. After 12 months, effects of fertilizer amendment and AM inoculation were measured on the growth of Eucalyptus seedlings and on soil microbial communities. The results clearly show that this plant species significantly modified the soil bacterial community. Both community structure (assessed by denaturing gradient gel electrophoresis profiles) and function (assessed by substrate-induced respiration responses including soil catabolic evenness) were significantly affected. Such changes in the bacterial structure and function were accompanied by disturbances in the composition of the herbaceous plant species layer. These results highlight the role of AM symbiosis in the processes involved in soil bio-functioning and plant coexistence and in afforestation programmes with exotic tree species that target preservation of native plant diversity.  相似文献   

20.
In the present study three cDNA fragments were cloned using degenerate primers for Mn-sod genes and PCR: two showed a high degree of identity with Mn-sods from plants and the third with Fe-sod. Arbuscular mycorrhizal (AM) symbiosis down-regulated their expression pattern under well-watered conditions. In contrast, AM symbiosis in combination with drought stress considerably increased the expression of the Mn-sod II gene and this correlated well with plant tolerance to drought. These results would suggest that mycorrhizal protection against oxidative stress caused by drought may be an important mechanism by which AM fungi protect the host plant against drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号