首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine the contribution of B cells to brain myelin injury in Semliki Forest Virus (SFV) encephalomyelitis, normal C57BL/6 (B6) and B-cell-deficient (C57BL/6-tm1Cgn) B6 mice were infected with SFV. The peak of clinical disease, i.e., the time at which the greatest proportions of mice had moderate to severe clinical signs, appeared earlier in B6 mice [day 7 postinfection (pi)] than in B-cell-deficient mice (day 21 pi). By flow cytometry, no clear differences were found in the percentages of CD3(+)CD4(+) T cells in the brains of B6 and B-cell-deficient mice. However, by day 21 pi, percentages of CD3(+)CD8(+) T cells were greater in brains of B-cell-deficient than in those of B6 mice. On day 21 pi, percentages of CD19(+) B cells were maximal in B6 mice, but B cells were absent in B-cell-deficient mice at all time points. Sera obtained from B6 mice showed antibody responses to SFV, to SFV E2 peptides p137-151 and p115-133, and to peptides of myelin oligodendrocyte glycoprotein p18-32 and myelin basic protein (MBP) p64-75. Sera obtained from B-cell-deficient mice showed minimal or no reactivity to SFV, E2, or myelin peptides. CNS inflammatory and PAS-positive macrophage foci were maximal on days 7-14 pi in all mice. Additionally, B6 mice had brain white matter vacuolation, whereas B-cell-deficient mice did not. These data suggest that brain infiltrating B cells and anti-myelin antibodies contribute to myelin injury in SFV encephalomyelitis.  相似文献   

2.
Metcalf TU  Griffin DE 《Journal of virology》2011,85(21):11490-11501
Sindbis virus (SINV) infection of the central nervous system (CNS) provides a model for understanding the role of the immune response in recovery from alphavirus infection of neurons. Virus clearance occurred in three phases: clearance of infectious virus (days 3 to 7), clearance of viral RNA (days 8 to 60), and maintenance of low levels of viral RNA (>day 60). The antiviral immune response was initiated in the cervical lymph nodes with rapid extrafollicular production of plasmablasts secreting IgM, followed by germinal center production of IgG-secreting and memory B cells. The earliest inflammatory cells to enter the brain were CD8(+) T cells, followed by CD4(+) T cells and CD19(+) B cells. During the clearance of infectious virus, effector lymphocytes in the CNS were primarily CD8(+) T cells and IgM antibody-secreting cells (ASCs). During the clearance of viral RNA, there were more CD4(+) than CD8(+) T cells, and B cells included IgG and IgA ASCs. At late times after infection, ASCs in the CNS were primarily CD19(+) CD38(+) CD138(-) Blimp-1(+) plasmablasts, with few fully differentiated CD38(-) CD138(+) Blimp-1(+) plasma cells. CD19(+) CD38(+) surface Ig(+) memory B cells were also present. The level of antibody to SINV increased in the brain over time, and the proportion of SINV-specific ASCs increased from 15% of total ASCs at day 14 to 90% at 4 to 6 months, suggesting specific retention in the CNS during viral RNA persistence. B cells in the CNS continued to differentiate, as evidenced by accumulation of IgA ASCs not present in peripheral lymphoid tissue and downregulation of major histocompatibility complex (MHC) class II expression on plasmablasts. However, there was no evidence of germinal center activity or IgG avidity maturation within the CNS.  相似文献   

3.
Wang Y  Lobigs M  Lee E  Müllbacher A 《Journal of virology》2003,77(24):13323-13334
C57BL/6J mice infected intravenously with the Sarafend strain of West Nile virus (WNV) develop a characteristic central nervous system (CNS) disease, including an acute inflammatory reaction. Dose response studies indicate two distinct kinetics of mortality. At high doses of infection (10(8) PFU), direct infection of the brain occurred within 24 h, resulting in 100% mortality with a 6-day mean survival time (MST), and there was minimal destruction of neural tissue. A low dose (10(3) PFU) of infection resulted in 27% mortality (MST, 11 days), and virus could be detected in the CNS 7 days postinfection (p.i.). Virus was present in the hypogastric lymph nodes and spleens at days 4 to 7 p.i. Histology of the brains revealed neuronal degeneration and inflammation within leptomeninges and brain parenchyma. Inflammatory cell infiltration was detectable in brains from day 4 p.i. onward in the high-dose group and from day 7 p.i. in the low-dose group, with the severity of infiltration increasing over time. The cellular infiltrates in brain consisted predominantly of CD8(+), but not CD4(+), T cells. CD8(+) T cells in the brain and the spleen expressed the activation markers CD69 early and expressed CD25 at later time points. CD8(+) T-cell-deficient mice infected with 10(3) PFU of WNV showed increased mortalities but prolonged MST and early infection of the CNS compared to wild-type mice. Using high doses of virus in CD8-deficient mice leads to increased survival. These results provide evidence that CD8(+) T cells are involved in both recovery and immunopathology in WNV infection.  相似文献   

4.
Experimental murine herpes simplex virus (HSV)-1 brain infection stimulates microglial cell-driven proinflammatory chemokine production which precedes the presence of brain-infiltrating systemic immune cells. In the present study, we investigated the phenotypes and infiltration kinetics of leukocyte trafficking into HSV-infected murine brains. Using real-time bioluminescence imaging, the infiltration of luciferase-positive splenocytes, transferred via tail vein injection into the brains of HSV-infected animals, was followed over an 18-day time course. Flow cytometric analysis of brain-infiltrating leukocytes at 5, 8, 14, and 30 days postinfection (d.p.i.), was performed to assess their phenotype. A predominantly macrophage (CD45(high)CD11b(+)Ly6C(high)) and neutrophil (CD45(high)CD11b(+)Ly6G(+)) infiltration was seen early during infection, with elevated levels of TNF-alpha mRNA expression. By 14 d.p.i., the phenotypic profile shifted to a predominantly lymphocytic (CD45(high)CD3(+)) infiltrate. This lymphocyte infiltrate was detected until 30 d.p.i., when infectious virus could not be recovered, with CD8(+) and CD4(+) T cells present at a 3:1 ratio, respectively. This T lymphocyte infiltration paralleled increased IFN-gamma mRNA expression in the brain. Activation of resident microglia (CD45(int)CD11b(+)) was also detected until 30 d.p.i., as assessed by MHC class II expression. Activated microglial cells were further identified as the predominant source of IL-1beta. In addition, infected mice given primed immunocytes at 4 d.p.i. showed a significant increase in mortality. Taken together, these results demonstrate that intranasal infection results in early macrophage and neutrophil infiltration into the brain followed by prolonged microglial activation and T lymphocyte retention. Similar prolonged neuroimmune activation may contribute to the neuropathological sequelae observed in herpes encephalitis patients.  相似文献   

5.
Autoreactive CD4(+) T cells play a major role in the pathogenesis of autoimmune diabetes in nonobese diabetic (NOD) mice. We recently showed that the non-MHC genetic background controlled enhanced entry into the IFN-gamma pathway by NOD vs B6.G7 T cells. In this study, we demonstrate that increased IFN-gamma, decreased IL-4, and decreased IL-10 production in NOD T cells is CD4 T cell intrinsic. NOD CD4(+) T cells purified and stimulated with anti-CD3/anti-CD28 Abs generated greater IFN-gamma, less IL-4, and less IL-10 than B6.G7 CD4(+) T cells. The same results were obtained in purified NOD.H2(b) vs B6 CD4(+) T cells, demonstrating that the non-MHC NOD genetic background controlled the cytokine phenotype. Moreover, the increased IFN-gamma:IL-4 cytokine ratio was independent of the genetic background of APCs, since NOD CD4(+) T cells generated increased IFN-gamma and decreased IL-4 compared with B6.G7 CD4(+) T cells, regardless of whether they were stimulated with NOD or B6.G7 APCs. Cell cycle analysis showed that the cytokine differences were not due to cycle/proliferative differences between NOD and B6.G7, since stimulated CD4(+) T cells from both strains showed quantitatively identical entry into subsequent cell divisions (shown by CFSE staining), although NOD cells showed greater numbers of IFN-gamma-positive cells with each subsequent cell division. Moreover, 7-aminoactinomycin D and 5-bromo-2'-deoxyuridine analysis showed indistinguishable entry into G(0)/G(1), S, and G(2)/M phases of the cell cycle for both NOD and B6.G7 CD4(+) cells, with both strains generating IFN-gamma predominantly in the S phase. Therefore, the NOD cytokine effector phenotype is CD4(+) T cell intrinsic, genetically controlled, and independent of cell cycle machinery.  相似文献   

6.
The effect of triiodothyronine (T3) on Na+,K(+)-ATPase activity of K562 human erythroleukemic cell was studied to understand why the erythrocyte sodium pump activity is decreased in hyperthyroidism. Na+,K(+)-ATPase activity of K562 cell lysates was assayed by measuring the release of inorganic phosphate (Pi) from ATP. Na+,K(+)-ATPase activity of K562 cell grown in the presence of T3 for 48 hours was significantly higher than that of control (0.98 +/- 0.05 mumol Pi h-1 mg protein-1 vs 0.82 +/- 0.10 mumol Pi h-1 mg protein-1, p < 0.05). The Na+,K(+)-ATPase activity could be stimulated in a time- and concentration-dependent manner; maximum stimulatory effect of T3 was seen at a concentration of 10(-7) mol/L. When an inducer [cytosine-beta-D-arabino-furanoside (ARA-C)] was added to the culture medium, the K562 cells showed signs of differentiation and synthesised haemoglobin. At the same time, the Na+,K(+)-ATPase activity remained high. We conclude that T3 stimulates Na+,K(+)-ATPase activity of K562 cells and in the presence of T3 during differentiation, the enzyme activity remains high.  相似文献   

7.
Susceptibility to severe lupus in MRL-Fas(lpr) mice requires not only the lpr mutation but also other predisposing genes. Using (MRL-Fas(lpr) x B6-Fas(lpr))F2 (where B6 represents C57BL/6) intercrosses that utilize the highly susceptible MRL and poorly susceptible B6 backgrounds, we previously mapped CFA-enhanced systemic lupus-like autoimmunity to four loci, named Lmb1-4, on chromosomes 4, 5, 7, and 10. In the current study, we generated and analyzed reciprocal interval congenic mice for susceptibility to CFA-enhanced autoimmunity at all four Lmb loci. Although all loci had at least a slight effect on lymphoproliferation, only Lmb3 demonstrated a major effect on lymphoproliferation and anti-chromatin Ab levels. Further characterization of Lmb3, primarily by comparing MRL-Fas(lpr) with MRL.B6-Lmb3 Fas(lpr) congenic mice, revealed that it also played a significant role in spontaneous lupus, modifying lymphoproliferation, IgG and autoantibody levels, kidney disease, and survival. The less susceptible B6 Lmb3 locus was associated with a marked reduction in numbers of CD4(+) and double-negative (CD4(-)CD8(-)) T cells, particularly in lymph nodes, as well as reduced T cell proliferation and enhanced T cell apoptosis, both in vivo and in vitro. IFN-gamma-producing CD4(+) T cells were also reduced in MRL.B6-Lmb3 Fas(lpr) mice. Further mapping using subinterval congenic mice placed Lmb3 in the telomeric portion of chromosome 7. Thus, Lmb3, primarily through its effects on CD4(+) and double-negative T cells, appears to be a highly penetrant lupus-modifying locus. Identification of the underlying genetic alteration responsible for this quantitative trait locus should provide new insights into lupus-modifying genes.  相似文献   

8.
9.
A number of blood-stage malaria Ags are under development as vaccine candidates, but knowledge of the cellular responses to these vaccines in humans is limited. We evaluated the nature and specificity of cellular responses in healthy American volunteers vaccinated with a portion of the major merozoite surface protein-1 (MSP1) of Plasmodium falciparum, MSP1(42), formulated on Alhydrogel. Volunteers were vaccinated three times with 80 microg of either MSP1(42)-FVO/Alhydrogel or MSP1(42)-3D7/Alhydrogel. Cells collected 2 wk after the third vaccination produced Th1 cytokines, including IFN-gamma and IL-2 following Ag stimulation, and greater levels of the Th2 cytokines IL-5 and IL-13; the anti-inflammatory cytokine IL-10 and the molecule CD25 (IL-2Ralpha) were also detected. The volunteers were evaluated for the MSP1(42)-FVO or MSP1(42)-3D7 specificity of their T cell responses. Comparison of their responses to homologous and heterologous Ags showed ex vivo IFN-gamma and IL-5 levels that were significantly higher to homologous rather than to heterologous Ags. The epitopes involved in this stimulation were shown to be present in the dimorphic MSP1(33) portion of the larger MSP1(42)-3D7 polypeptide, and indirect experiment suggests the same for the MSP1(42)-FVO polypeptide. This contrasts with B cell responses, which were primarily directed to the conserved MSP1(19) portion. Furthermore, we explored the maturation of memory T cells and found that 46% of vaccinees showed specific memory T cells defined as CD4(+)CD45RO(+)CD40L(+) after long-term in vitro culture. The identification of human-specific CD4(+) memory T cells provides the foundation for future studies of these cells both after vaccination and in field studies.  相似文献   

10.
11.
The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG) with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE), scanning with multiple signal classification (MUSIC), and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC) analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.  相似文献   

12.
During the priming phase of an antitumor immune response, CD8(+) T cells undergo a program of differentiation driven by professional APCs in secondary lymphoid organs. This leads to clonal expansion and acquisition both of effector functions and a specific adhesion molecule pattern. Whether this program can be reshaped during the effector phase to adapt to the effector site microenvironment is unknown. We investigated this in murine brain tumor models using adoptive transfer of tumor-specific CD8(+) T cells, and in spontaneous immune responses of patients with malignant glioma. Our data show proliferation of Ag-experienced tumor-specific T cells within the brain parenchyma. Moreover, CD8(+) T cells further differentiated in the brain, exhibiting enhanced IFN-gamma and granzyme B expression and induction of alpha(E)(CD103)beta(7) integrin. This unexpected integrin expression identified a subpopulation of CD8(+) T cells conditioned by the brain microenvironment and also had functional consequences: alpha(E)(CD103)beta(7)-expressing CD8(+) T cells had enhanced retention in the brain. These findings were further investigated for CD8(+) T cells infiltrating human malignant glioma; CD8(+) T cells expressed alpha(E)(CD103)beta(7) integrin and granzyme B as in the murine models. Overall, our data indicate that the effector site plays an active role in shaping the effector phase of tumor immunity. The potential for local expansion and functional reprogramming should be considered when optimizing future immunotherapies for regional tumor control.  相似文献   

13.
After infection of epithelial surfaces, HSV-1 elicits a multifaceted antiviral response that controls the virus and limits it to latency in sensory ganglia. That response encompasses the CD8(+) T cells, whose precise role(s) is still being defined; immune surveillance in the ganglia and control of viral spread to the brain were proposed as the key roles. We tracked the kinetics of the CD8(+) T cell response across lymphoid and extralymphoid tissues after ocular infection. HSV-1-specific CD8(+) T cells first appeared in the draining (submandibular) lymph node on day 5 and were detectable in both nondraining lymphoid and extralymphoid tissues starting on day 6. However, although lymphoid organs contained both resting (CD43(low)CFSE(high)) and virus-specific cells at different stages of proliferation and activation, extralymphoid sites (eye, trigeminal ganglion, and brain) contained only activated cells that underwent more than eight proliferations (CD43(high)CFSE(neg)) and promptly secreted IFN-gamma upon contact with viral Ags. Regardless of the state of activation, these cells appeared too late to prevent HSV-1 spread, which was seen in the eye (from day 1), trigeminal ganglia (from day 2), and brain (from day 3) well before the onset of a detectable CD8(+) T cell response. However, CD8(+) T cells were critical in reducing viral replication starting on day 6 and for its abrogation between days 8 and 10; CD8-deficient animals failed to control the virus, exhibited persisting high viral titers in the brain after day 6, and died of viral encephalitis between days 7 and 12. Thus, CD8(+) T cells do not control HSV-1 spread from primary to tertiary tissues, but, rather, attack the virus in infected organs and control its replication in situ.  相似文献   

14.
Evidence suggests that Pseudomonas aeruginosa stromal keratitis and corneal perforation (susceptibility) is a CD4(+) T cell-regulated inflammatory response following experimental P. aeruginosa infection. This study examined the role of Langerhans cells (LC) and the B7/CD28 costimulatory pathway in P. aeruginosa-infected cornea and the contribution of costimulatory signaling by this pathway to disease pathology. After bacterial challenge, the number of LC infiltrating the central cornea was compared in susceptible C57BL/6 (B6) vs resistant (cornea heals) BALB/c mice. LC were more numerous at 1 and 6 days postinfection (p.i.), but were similar at 4 days p.i., in susceptible vs resistant mice. Mature, B7 positive-stained LC in the cornea and pseudomonas Ag-associated LC in draining cervical lymph nodes also were increased significantly p.i. in susceptible mice. To test the relevance of these data, B6 mice were treated systemically and subconjunctivally with neutralizing B7 (B7-1/B7-2) mAbs. Treatment decreased corneal disease severity and reduced significantly the number of B7-positive cells as well as the recruitment and activation of CD4(+) T cells in the cornea. IFN-gamma mRNA levels also were decreased significantly in the cornea and in draining cervical lymph nodes of mAb-treated mice. When CD28(-/-) animals were tested, they exhibited a less severe disease response (no corneal perforation) than wild-type B6 mice and had a significantly lower delayed-type hypersensitivity response to heat-killed pseudomonas Ag. These results support a critical role for B7/CD28 costimulation in susceptibility to P. aeruginosa ocular infection.  相似文献   

15.
Strategies to prime CD8(+) T cells against Murine gammaherpesvirus 68 (gammaHV68; MHV68) latency have, to date, resulted in only limited effects. While early forms of latency (<21 days) were significantly reduced, effects were not seen at later times, indicating loss of control by the primed CD8(+) T cells. In the present study, we evaluated CD8(+) T cells in an optimized system, consisting of OTI T-cell-receptor (TCR) transgenic mice, which generate clonal CD8(+) T cells specific for K(b)-SIINFEKL of OVA, and a recombinant gammaHV68 that expresses OVA (gammaHV68.OVA). Our aim was to test whether this optimized system would result in more effective control not only of acute infection but also of later forms of latent infection than was seen with previous strategies. First, we show that OTI CD8(+) T cells effectively controlled acute replication of gammaHV68.OVA in liver, lung, and spleen at 8 and 16 days after infection of OTI/RAG mice, which lack expression of B and CD4(+) T cells. However, we found that, despite eliminating detectable acute replication, the OTI CD8(+) T cells did not prevent the establishment of latency in the OTI/RAG mice. We next evaluated the effectiveness of OTI T cells in OTI/B6 animals, which express B cells--a major site of latency in wild-type mice--and CD4(+) T cells. In OTI/B6 mice OTI CD8(+) T cells not only reduced the frequency of cells that reactivate from latency and the frequency of cells bearing the viral genome at 16 days after infection (similar to what has been reported before) but also were effective at reducing latency at 42 days after infection. Together, these data show that CD8(+) T cells are sufficient, in the absence of B cells and CD4(+) T cells, for effective control of acute replication. The data also demonstrate for the first time that a strong CD8(+) T-cell response can limit long-term latent infection.  相似文献   

16.
Y Sato  S Nagata  M Takiguchi 《PloS one》2012,7(8):e42776
Humanized mice are expected to be useful as small animal models for in vivo studies on the pathogenesis of infectious diseases. However, it is well known that human CD8(+) T cells cannot differentiate into effector cells in immunodeficient mice transplanted with only human CD34(+) hematopoietic stem cells (HSCs), because human T cells are not educated by HLA in the mouse thymus. We here established HLA-B*51:01 transgenic humanized mice by transplanting human CD34(+) HSCs into HLA-B*51:01 transgenic NOD/SCID/Jak3(-/-) mice (hNOK/B51Tg mice) and investigated whether human effector CD8(+) T cells would be elicited in the mice or in those infected with HIV-1 NL4-3. There were no differences in the frequency of late effector memory and effector subsets (CD27(low)CD28(-)CD45RA(+/-)CCR7(-) and CD27(-)CD28(-)CD45RA(+/-)CCR7(-), respectively) among human CD8(+) T cells and in that of human CD8(+) T cells expressing CX3CR1 and/or CXCR1 between hNOK/B51Tg and hNOK mice. In contrast, the frequency of late effector memory and effector CD8(+) T cell subsets and of those expressing CX3CR1 and/or CXCR1 was significantly higher in HIV-1-infected hNOK/B51Tg mice than in uninfected ones, whereas there was no difference in that of these subsets between HIV-1-infected and uninfected hNOK mice. These results suggest that hNOK/B51Tg mice had CD8(+) T cells that were capable of differentiating into effector T cells after viral antigen stimulation and had a greater ability to elicit effector CD8(+) T cells than hNOK ones.  相似文献   

17.
Previous studies have demonstrated that an MHC class II molecule with an antigenic peptide genetically fused to its beta-chain is capable of presenting this peptide to CD4(+) T cells. We hypothesized that covalent peptide/class II complex may direct the accessory molecules to exert their function specifically onto T cells in a TCR-guided fashion. To test this hypothesis, we generated several recombinant adenoviruses expressing covalent myelin basic protein peptide/I-A(u) complex (MBP(1-11)/I-A(u)) and the costimulatory molecule B7-1. Functional studies demonstrated that adenovirus-infected cells are capable of activating an MBP(1-11)-specific T cell hybridoma. Coexpression of the B7-1 molecule and MBP(1-11)/I-A(u) by the same adenovirus leads to synergy in T cell activation elicited by virus-infected cells. Furthermore, studies in syngeneic mice infected with the various adenoviruses revealed that MBP(1-11)-specific T cells are specifically activated by the coexpression of B7-1 and MBP(1-11)/I-A(u) in vivo. In conclusion, the coexpression of the covalent peptide/class II complex and accessory molecules by the same adenovirus provides a unique strategy to modulate the epitope-specific T cell response in a TCR-guided fashion. This approach may be applicable to investigate the roles of other accessory molecules in the engagement of the TCR class II molecule by substituting B7-1 with other accessory molecules in the recombinant adenovirus.  相似文献   

18.
A newly identified costimulatory molecule, programmed death-1 (PD-1), provides a negative signal that is essential for immune homeostasis. However, it has been suggested that its ligands, B7-H1 (PD-L1) and B7-dendritic cells (B7-DC; PD-L2), could also costimulate T cell proliferation and cytokine secretion. Here we demonstrate the involvement of PD-1/B7-H1 and B7-DC interaction in the development of colitis. We first examined the expression profiles of PD-1 and its ligands in both human inflammatory bowel disease and a murine chronic colitis model induced by adoptive transfer of CD4(+)CD45RB(high) T cells to SCID mice. Second, we assessed the therapeutic potential of neutralizing anti-B7-H1 and/or B7-DC mAbs using this colitis model. We found significantly increased expression of PD-1 on T cells and of B7-H1 on T, B, and macrophage/DCs in inflamed colon from both inflammatory bowel disease patients and colitic mice. Unexpectedly, the administration of anti-B7-H1, but not anti-B7-DC, mAb after transfer of CD4(+)CD45RB(high) T cells suppressed wasting disease with colitis, abrogated leukocyte infiltration, and reduced the production of IFN-gamma, IL-2, and TNF-alpha, but not IL-4 or IL-10, by lamina propria CD4(+) T cells. These data suggest that the interaction of PD-1/B7-H1, but not PD-1/B7-DC, might be involved in intestinal mucosal inflammation and also show a possible role of interaction between B7-H1 and an as yet unidentified receptor for B7-H1 in inducing T cell activation.  相似文献   

19.
Plasmacytoid dendritic cells (pDCs) are highly specialized APCs that, in addition to their well-recognized role in anti-viral immunity, also regulate immune responses. Liver-resident pDCs are considerably less immunostimulatory than those from secondary lymphoid tissues and are equipped to promote immune tolerance/regulation through various mechanisms. IL-27 is an IL-12 family cytokine that regulates the function of both APCs and T cells, although little is known about its role in pDC immunobiology. In this study, we show that mouse liver pDCs express higher levels of IL-27p28 and EBV-induced protein 3 (Ebi3) compared with those of splenic pDCs. Both populations of pDCs express the IL-27Rα/WSX-1; however, only liver pDCs significantly upregulate expression of the coregulatory molecule B7 homolog-1 (B7-H1) in response to IL-27. Inhibition of STAT3 activation completely abrogates IL-27-induced upregulation of B7-H1 expression on liver pDCs. Liver pDCs treated with IL-27 increase the percentage of CD4(+)Foxp3(+) T cells in MLR, which is dependent upon expression of B7-H1. pDCs from Ebi3-deficient mice lacking functional IL-27 show increased capacity to stimulate allogeneic T cell proliferation and IFN-γ production in MLR. Liver but not spleen pDCs suppress delayed-type hypersensitivity responses to OVA, an effect that is lost with Ebi3(-/-) and B7-H1(-/-) liver pDCs compared with wild-type liver pDCs. These data suggest that IL-27 signaling in pDCs promotes their immunoregulatory function and that IL-27 produced by pDCs contributes to their capacity to regulate immune responses in vitro and in vivo.  相似文献   

20.
Duncan DS  Miller SD 《PloS one》2011,6(4):e18548
The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of multiple sclerosis (MS). In response to TMEV infection in vitro, microglia produce high levels of inflammatory cytokines and chemokines, and are efficient antigen-presenting cells (APCs) for activating CD4(+) T cells. However, the regulatory function of microglia and other CNS-infiltrating APCs in response to TMEV in vivo remains unclear. Here we demonstrate that microglia increase expression of proliferating cell nuclear antigen (PCNA), and phenotypically express high levels of major histocompatibility complex (MHC)-Class I and II in response to acute infection with TMEV in SJL/J mice. Microglia increase expression of the inhibitory co-stimulatory molecule, B7-H1 as early as day 5 post-infection, while CNS-infiltrating CD11b(+)CD11c(-)CD45(HIGH) monocytes/macrophages and CD11b(+)CD11c(+)CD45(HIGH) dendritic cells upregulate expression of B7-H1 by day 3 post-infection. Utilizing a neutralizing antibody, we demonstrate that B7-H1 negatively regulates TMEV-specific ex vivo production of interferon (IFN)-γ, interleukin (IL)-17, IL-10, and IL-2 from CD4(+) and CD8(+) T cells. In vivo blockade of B7-H1 in SJL/J mice significantly exacerbates clinical disease symptoms during the chronic autoimmune stage of TMEV-IDD, but only has minimal effects on viral clearance. Collectively, these results suggest that CNS expression of B7-H1 regulates activation of TMEV-specific T cells, which affects protection against TMEV-IDD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号