首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
The effects of alpha-ketoglutarate on ammonium acetate induced hyperammonemia were studied biochemically in experimental rats. The levels of circulatory, non-protein nitrogen, serum transaminases and thiobarbituric acid reactive substances were significantly increased in ammonium acetate treated rats. These levels were significantly decreased in alpha-ketoglutarate and ammonium acetate treated rats. Similar patterns of alterations were observed in the levels of free fatty acids, triglycerides, phopholipids and cholesterol inbetween various groups. Further non-enzymatic (vitamins C and E) and enzymatic (superoxide dismutase and catalase) antioxidants were significantly decreased in ammonium acetate treated rats; and were significantly increased in alpha-ketoglutarate and ammonium acetate treated rats. The biochemical alterations during alpha-ketoglutarate treatment could be due to (i) the detoxification of excess ammonia, (ii) by participating in the non-enzymatic oxidative decarboxylation in the hydrogen peroxide decomposition process and (iii) by enhancing the proper metabolism of fats which could suppress oxygen radicals generation and thus prevent the lipid peroxidative damages in rats.  相似文献   

2.
Plant flavonoids are emerging as potent therapeutic drugs effective against a wide range of free radical-mediated diseases. Morin (3,5,7,2′,4′-pentahydroxyflavone), a member of flavonols, is an important bioactive compound by interacting with nucleic acids, enzymes and protein. In this study, we found that morin (30 mg/kg body weight) by oral administration offers protection against hyperammonemia by means of reducing blood ammonia, oxidative stress and enhancing antioxidant status in ammonium chloride-induced (100 mg/kg body weight; i.p) hyperammonemic rats. Enhanced blood ammonia, plasma urea, lipid peroxidation in circulation and tissues (liver and brain) of ammonium chloride-treated rats was accompanied by a significant decrease in the tissues levels of superoxide dismutase (SOD), catalase, reduced glutathione (GSH) and glutathione peroxidase (GPx). Morin administered rats showed a significant reduction in ammonia, urea, lipid peroxidation with a simultaneous elevation in antioxidant levels. Cotreatment with morin prevented the elevation of liver marker enzymes induced by ammonium chloride. The body weight of the animals decreased significantly on ammonium chloride administration when compared with control group. However, cotreatment with morin significantly prevented the decrease of the body weight caused by ammonium chloride. Hyperammonemic rats show liver fibrosis, steatosis, sinusoidal dilatation, etc., along with necrosis, microcystic degeneration in brain. All these changes were reduced in hyperammonemic rats treated with Morin, which too correlated with the biochemical observations. In conclusion, these findings indicate that morin exert antioxidant potential and offer protection against ammonium chloride-induced hyperammonemia. But the exact underlying mechanism needs to be elucidated.  相似文献   

3.
The effect of Dipel (D), a Bacillus thuringiensis-based bioinsecticide, on hepatic antioxidant enzyme activities and lipid peroxidation in rat liver was investigated. Administration of D in a dose of 1 mg/100 g body mass for 4 successive days increased the activities of glutathione peroxidase (GPx), glutathione reductase (GR) and the level of malondialdehyde (MDA) in rat hepatocytes. The activity of superoxide dismutase (SOD) and glutathione (GSH) level were decreased. Administration of D in rats pretreated with alpha-tocopherol (alphaT) or acetylsalicylic acid (ASA) decreased the activities of GPx, GR and MDA levels, while the GSH level was increased compared with rats treated with D alone. The SOD activity was increased in rats pretreated with alphaT before D, but decreased on pretreatment with ASA, compared with rats treated with D alone. The results indicated that D induced oxidative stress in rat liver that has been protected by prior administration of alphaT or ASA.  相似文献   

4.
The infusion of ether anesthaetized rats with 0.2 M (1 mmols in total) ammonium acetate or glutamine were compared with the infusion of 0.2 M NaCl. The levels of circulating glucose, amino acids, lactate, urea and ammonium were measured as well as liver glycogen and tissue amino acids and the liver and muscle activities of carbamoyl phosphate synthetases I and II, glutamate dehydrogenase, glutamine synthetase and adenylate deaminase. Neither treatment altered the glucose and glycogen homeostasis. The infusion of ammonium did not result in increases in circulating ammonium, but resulted in increased circulating urea after a short delay; the infusion of glutamine resulted also in urea production but much later on. Glutamine infusion also resulted in increased tissue free amino-acid levels. There was little alteration in enzyme activities, except for decreased glutamine synthetase and adenylate deaminase activity in muscle of glutamine-infused rats and higher tissue carbamoyl phosphate synthetase II. The results agree with a fast removal of infused ammonium, and maintenance of glutamine, with their channeling towards urea production at a rate comparable with that of infusion, that did not alter significantly the homeostasis of the experimental animals.  相似文献   

5.
In the present study, the influence of subchronic effects of two plant growth regulators (PGRs) [Abcisic acid (ABA) and Gibberellic acid (GA3)] on antioxidant defense systems [reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation level (malondialdehyde = MDA) in various tissues of the rat were investigated during treatment as a drinking water model. 75 ppm of ABA and GA3 in drinking water were continuously administered orally to rats (Sprague-Dawley albino) ad libitum for 50 days. The PGRs treatments caused different effects on the antioxidant defense systems and MDA content of dosed rats compared to controls. The lipid peroxidation end product MDA significantly increased in the lungs, heart and kidney of rats treated with GA3 without significant change in the spleen. ABA caused also a significant increase in MDA content in the spleen, lungs, heart and kidney. The GSH levels were significantly depleted in the spleen, lungs and stomach of rats treated with ABA without any change in the tissues of rats treated with GA3 except the kidney where it increased. Antioxidant enzyme activities such as SOD significantly increased in the lungs and stomach and decreased in the spleen and heart tissues of rats treated with GA3. Meanwhile, SOD significantly decreased in the spleen, heart and kidney and increased in the lungs of rats treated with ABA. While CAT activity significantly decreased in the lungs of rats treated with GA3, a significant increase occurred in the heart of rats treated with both PGRs. On the other hand, the ancillary enzyme GR activity in the tissues were either significantly depleted or not changed with PGRs treatment. The drug metabolizing enzyme GST activity significantly decreased in the lungs of rats treated with ABA but increased in the stomach of rats treated with both PGRs. As a conclusion, the rats resisted oxidative stress via the antioxidant mechanism. But the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. This data, along with changes, suggests that PGRs produced substantial systemic organ toxicity in the spleen, lungs, stomach, heart and kidney during a 50-day period of subchronic exposure.  相似文献   

6.
Levels of lead in the livers and kidneys of rats increased in proportion to the dose of lead acetate that the rats were given orally or in the drinking water. The activities of delta-aminolevulinic acid dehydratase (DALAD) in blood and liver decreased when the rats were dosed with lead, whereas glutathione levels in the blood increased. The decrease in the activity of blood DALAD was the most sensitive indicator of lead toxicity. Levels of lead in the livers and kidneys decreased after 3, 7, and 14 d of lead withdrawal. The activities of blood DALAD increased after 3 d of lead withdrawal. Groups of rats that initially weighted an average of 140 g were killed at weekly intervals for 6 wk. Blood hematocrits and liver glutathione levels increased, and blood DALAD and activated DALAD from blood decreased with increasing age of the rats. Activated DALAD activities from liver increased after the first week of the study.  相似文献   

7.
In the present study, the influence of subchronic effects of two plant growth regulators (PGRs) [Abcisic acid (ABA) and Gibberellic acid (GA3)] on antioxidant defense systems [reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)] and lipid peroxidation level (malondialdehyde = MDA) in various tissues of the rat were investigated during treatment as a drinking water model. 75 ppm of ABA and GA3 in drinking water were continuously administered orally to rats (Sprague-Dawley albino) ad libitum for 50 days. The PGRs treatments caused different effects on the antioxidant defense systems and MDA content of dosed rats compared to controls. The lipid peroxidation end product MDA significantly increased in the lungs, heart and kidney of rats treated with GA3 without significant change in the spleen. ABA caused also a significant increase in MDA content in the spleen, lungs, heart and kidney. The GSH levels were significantly depleted in the spleen, lungs and stomach of rats treated with ABA without any change in the tissues of rats treated with GA3 except the kidney where it increased. Antioxidant enzyme activities such as SOD significantly increased in the lungs and stomach and decreased in the spleen and heart tissues of rats treated with GA3. Meanwhile, SOD significantly decreased in the spleen, heart and kidney and increased in the lungs of rats treated with ABA. While CAT activity significantly decreased in the lungs of rats treated with GA3, a significant increase occurred in the heart of rats treated with both PGRs. On the other hand, the ancillary enzyme GR activity in the tissues were either significantly depleted or not changed with PGRs treatment. The drug metabolizing enzyme GST activity significantly decreased in the lungs of rats treated with ABA but increased in the stomach of rats treated with both PGRs.

As a conclusion, the rats resisted oxidative stress via the antioxidant mechanism. But the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. This data, along with changes, suggests that PGRs produced substantial systemic organ toxicity in the spleen, lungs, stomach, heart and kidney during a 50-day period of subchronic exposure.  相似文献   

8.
Kidney weight was significantly decreased in hypothyroidism (induced by Na131I administration) and increased in hyperthyroidism (induced by thyroxine treatment) as compared to control in female Wistar rats. The tissue lipid peroxidation level remained unchanged in hyperthyroid rats but significantly increased in hypothyroid rats. Superoxide dismutase was decreased in both experimental groups but more so in hyperthyroid rats. Catalase was reduced significantly in hyperthyroid rats but remained unaffected in hypothyroid rats. Tissue glutathione peroxidase (GPx) activity was increased while reduced glutathione levels remained unaltered in both hypothyroid and hyperthyroid rats. Plasma GPx activity was significantly low in both the hypothyroid and hyperthyroid rats. The results suggest alterations in the oxidative stress in hypothyroid and hyperthyroid rat kidneys with concomitant changes of free radical scavengers.  相似文献   

9.
This study was undertaken to investigate the protective effects of melatonin against formaldehyde-induced neurotoxicity in prefrontal cortex of rats. For this purpose, 21 male Wistar rats were divided into three groups. The rats in Group I were used as a control, while the rats in Group II were injected every other day with formaldehyde. The rats in Group III received melatonin daily while exposed to formaldehyde. At the end of 14-day experimental period, all rats were killed by decapitation. The brains of the rats were removed and the prefrontal cortex tissues were obtained from all brain specimens. Some of the prefrontal cortex tissue specimens were used for determination of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) levels. The remaining prefrontal cortex tissue specimens were used for immunohistochemical evaluation. The levels of SOD and GSH-Px were significantly decreased, and MDA levels, were significantly increased in rats treated with formaldehyde compared with those of the controls. In the immunohistochemical evaluation of this group, apoptotic cells were observed. However, increased SOD and GSH-Px enzyme activities, and decreased MDA levels, were detected in the rats administered melatonin while exposed to formaldehyde. Furthermore, apoptotic changes caused by formaldehyde were decreased in these rats. The results of our study suggest that melatonin treatment prevents formaldehyde-induced neuronal damage in prefrontal cortex.  相似文献   

10.
Summary Ethanol administration to female rats before and during pregnancy resulted in decreased number of litters and increased activities of serum GOT, GPT and ALP. The hepatotoxicity of ethanol was indicated by the histological alterations both in the mother and siblings. There was increased levels of tissue lipids in mother and litters born to alcoholic rats. The concentration of TBARS in the liver and kidney were significantly increased in alcohol treated rats and their litters. The activities of the anti-peroxidative enzymes SOD and CAT were decreased on alcohol treatment in female rats. The glutathione content in liver and kidney decreased significantly in litters born to alcoholic rats.We have observed that the treatment with N-acetylcysteine offers protection against the toxic effect of alcohol in female rats during pregnancy and litters born to them. In N-acetylcysteine treated rats the number of litters as well as the average birth weight were close to that of control animals. Nacetylcysteine decreases the activities of serum GOT, GPT and ALP in female rats. We have also observed decreased levels of tissue lipids in mother and litters born to alcoholic rats given N-acetylcysteine when compared to alcoholic rats. The levels of TBARS in liver, kidney were also decreased both in mother and litter born to alcohol + N-acetylcysteine, while the activities of SOD and CAT were increased in liver of alcoholic rats given N-acetylcysteine when compared to alcoholic rats. Histopathological studies also showed the protective effect of N-acetylcysteine in both mother and litter in liver and kidney against alcoholic induced toxicity.  相似文献   

11.
The present study was designed to investigate the antihypertensive and antioxidant effect of Melothria maderaspatana leaf extract (MME) on sham-operated and DOCA-salt (deoxycorticosterone acetate) induced hypertensive rats. Administration of DOCA-salt significantly increased the systolic (from 127 to 212 mm Hg) and diastolic (from 91 to 174 mm Hg) blood pressure compared to sham-operated control rats, while treatment with MME significantly reduced the systolic (from 212 to 135 mm Hg) and diastolic (from 174 to 96 mm Hg) blood pressure compared to hypertensive control. In DOCA-salt rats, the plasma and tissue concentration of thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxide (LOOH) significantly increased and administration of MME significantly reduced these parameters towards the levels in sham-operated control. In hypertensive rats, activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and levels of non-enzymatic antioxidants such as vitamin C, vitamin E and reduced glutathione (GSH) decreased significantly in the plasma and tissues. Administration of MME returned the enzymatic and non-enzymatic antioxidants towards sham-operated control. MME shows both antihypertensive and antioxidant properties in DOCA-salt hypertensive rats and, among the three different doses tested, 200 mg/kg caused the maximum effect.  相似文献   

12.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

13.
Objectives: Exposure to 4-vinylcyclohexene diepoxide (VCD) was reported to induce testicular germ cell toxicity in rodents. However, there is paucity of information on the precise biochemical and molecular mechanisms of VCD-induced male reproductive toxicity.

Methodology: This study investigated the influence of VCD on testicular and epidydimal functions following oral exposure of Wistar rats to VCD at 0, 100, 250 and 500?mg/kg for 28 consecutive days.

Results: Administration of VCD significantly decreased the body weight gain and organo-somatic indices of the testes and epididymis. When compared with the control, VCD significantly decreased superoxide dismutase and catalase activities in the testes whereas it significantly decreased superoxide dismutase activity but increased catalase activity in the epididymis. Moreover, while glutathione peroxidase activity and glutathione level remain unaffected, exposure of rats to VCD significantly increased glutathione S-transferase activity as well as hydrogen peroxide and malondialdehyde levels in testes and epididymis of the treated rats. The spermiogram of VCD-treated rats showed significant decrease in epididymal sperm count, sperm progressive motility, testicular sperm number and daily sperm production when compared with the control. Administration of VCD significantly decreased circulatory concentrations of follicle-stimulating hormone, luteinizing hormone and testosterone along with testicular and epididymal degeneration in the treated rats. Immunohistochemical analysis showed significantly increased cyclooxygenase-2, inducible nitric oxide synthase, caspase-9 and caspase-3 protein expressions in the testes of VCD-treated rats.

Conclusion: Exposure to VCD induces testicular and epidydimal dysfunctions via endocrine suppression, disruption of antioxidant enzymes activities, increase in biomarkers of oxidative stress, inflammation and apoptosis in rats.  相似文献   

14.
The activity of the glutathione system and conjugated diene content (CD) have been investigated in the liver and blood serum of rats with experimental hyperthyroidism treated with melaxen and valdoxan. The study of glutathione reductase (GR), glutathione peroxidase (GP) and glutathione transferase (GST) activities increased under this pathology has shown that administration of these compounds decreased these activities towards control levels. Melaxen and valdoxan administration increased reduced glutathione (GSH) content as compared with untreated hyperthyroid rats. This increase may be associated with its decreased utilization for detoxification of toxic products of free radical oxidation (FRO). Administration of the melatonin correcting drugs also tended to normalize the CD level increased in the liver and blood serum of hyperthyroid rats. Results of this study indicate that melaxen and valdoxan exhibit positive effect on free radical homeostasis. This appears to be accompanied by a decrease in the load of the glutathione antioxidant system in comparison with the examined pathology.  相似文献   

15.
Guanidino compounds are synthesized from arginine in various tissues such as liver, kidney, brain, and skeletal muscle. Guanidino compounds such as arginine and creatine play an important role in nitrogen metabolism, whereas other guanidino compounds such as guanidinosuccinic acid and alpha-N-acetylarginine are known toxins. In order to understand the changes in the metabolism of guanidino compounds during ammonia toxicity, we investigated the effect of hyperammonemia induced by an ammonium acetate injection on the levels of guanidino compounds in plasma, liver, kidney, and brain of rats. Control animals were injected with an equal volume of saline. Blood and tissues were removed 1 h following ammonium acetate or saline injection and guanidino compounds were analyzed by high-performance liquid chromatography. Plasma and kidney levels of guanidinosuccinic acid were significantly elevated in rats challenged with ammonium acetate. Brain alpha-N-acetylarginine levels were also significantly higher in rats injected with ammonium acetate as compared to those in controls. Our results suggest that guanidinosuccinic acid and alpha-N-acetylarginine may play an important role in hyperammonemia.  相似文献   

16.
The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) in the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin‐induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8‐hydroxy‐2'‐deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin‐induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:398‐405, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21501  相似文献   

17.
Liver lead levels were higher for rats that were orally dosed with 100 mg lead acetate/kg body wt and fed a semipurified diet than those fed a pelleted diet. The activities of delta-aminolevulinic acid dehydratase in blood were decreased in the group given 10 μg lead acetate/mL in their drinking water and fed the semipurified diet, but not in the blood from the group treated with lead and fed the pelleted diet. The levels of glutathione in the liver decreased in response to lead acetate in the drinking water of rats fed the semipurified diet, but not in the livers from the group fed the pelleted diet and treated with lead. The levels of lead in the kidneys were higher in the group given lead acetate in their drinking water and fed the semipurified diet than in the lead treated group fed the pelleted diet. Rats dosed orally with lead or given lead in the drinking water and fed the semipurified diet were more sensitive to lead treatment than those fed the pelleted diet.  相似文献   

18.
In the present study, oxidative stress in diabetic model and the effect of garlic oil or melatonin treatment were examined. Streptozotocin (60 mg/kg body weight, i.p.)-induced diabetic rats, showed a significant increase of plasma glucose, total lipids, triglyceride, cholesterol, lipid peroxides, nitric oxide and uric acid. Concomitantly, significant decreases in the levels of antioxidants ceruloplasmin, albumin and total thiols were found in the plasma of diabetic rats. Lipid peroxide levels were significantly increased in erythrocyte lysate and in homogenates of liver and kidney, while superoxide dismutase (SOD) activities were decreased in tissue homogenates of liver and kidney. Treatment of diabetic rats with garlic oil (10 mg/kg i.p.) or melatonin (200 microg/kg i.p.) for 15 days significantly increased plasma levels of total thiol, ceruloplasmin activities, albumin. Lipid peroxides, uric acid, blood glucose, total lipid, triglyceride and cholesterol were decreased significantly after treatment with garlic oil or melatonin. Nitric oxide levels were decreased significantly in rats treated with melatonin only. In erythrocytes lysate, glutathione S-transferase (GST) activities were increased significantly in rats treated with garlic oil or melatonin, while lipid peroxides decreased significantly and total thiol increased significantly in melatonin or garlic oil treatment, respectively. In liver homogenates of rats treated with garlic or melatonin, lipid peroxides were decreased significantly, and GST activities increased significantly, while SOD activities were increased significantly in liver and kidney after garlic or melatonin treatment. The results suggest that garlic oil or melatonin may effectively normalize the impaired antioxidants status in streptozotocin induced-diabetes. The effects of these antioxidants of both agents may be useful in delaying the complicated effects of diabetes as retinopathy, nephropathy and neuropathy due to imbalance between free radicals and antioxidant systems. Moreover, melatonin may be more powerful free radical scavenger than garlic oil.  相似文献   

19.
The present study was undertaken on male rats to elucidate the selenosis induced by sodium selenite and the role played by betaine in alleviating selenium toxicity. Rats were treated with sodium selenite (6 mg/kg body weight/day) with or without betaine (240 mg/kg body weight/day). Selenotoxicosis was evident from the elevated plasma levels of total bilirubin, transaminases, and alkaline phosphatase activities. Moreover, the total protein levels decreased, and this decrease associated with a decreased albumin level, whereas the globulin level increased in selenium-intoxicated rats. The development of selenosis corresponded well with the induction of oxidative stress evident from decrease of total thiol level and glutathione content. Furthermore, activities of glutathione reductase, glucose-6-phosphate dehydrogenase, catalase, and paraoxonase-1 were decreased in selenium-treated rats. In contrast, superoxide dismutase and glutathione peroxidase activities were increased by excess selenium administration compared with control animals. As well, malondialdehyde and protein carbonyl were elevated in rats treated with selenium. Supplementation of betaine simultaneously with selenium caused less marked alteration in the investigated parameters. Betaine attenuated the selenotoxicosis by restoring thiol levels that preserve enzymatic antioxidants activity and attenuate the oxidation of lipids and proteins.  相似文献   

20.
Anaesthetized rats were given an i.v. overload of 200 mmoles of ammonium acetate. Plasma ammonium levels were not altered for up to 20 minutes after the end of the infusion. The load of ammonium, however, increased the overall non-protein nitrogen content of circulating plasma, as for the increase in urea and amino acids (alanine, phenylalanine, aspartate + asparagine and glutamate + glutamine). The activities of glutamine synthetase was found increased in liver, muscle and kidney; and glutamate dehydrogenase increased in liver and decreased in muscle and kidney. Adenylate deaminase decreased in all the studied tissues. The fast enzyme and plasma metabolite adaptations to ammonium overload were all in the sense of favoring the incorporation of ammonium into amino acids (later into urea) as well as to avoid their deamination, thus effectively removing the excess ammonium from the bloodstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号