首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transgenic Arabidopsis plants overexpressing the wheat vacuolarNa+/H+ antiporter TNHX1 and H+-PPase TVP1 are much more resistantto high concentrations of NaCl and to water deprivation thanthe wild-type strains. These transgenic plants grow well inthe presence of 200 mM NaCl and also under a water-deprivationregime, while wild-type plants exhibit chlorosis and growthinhibition. Leaf area decreased much more in wild-type thanin transgenic plants subjected to salt or drought stress. Theleaf water potential was less negative for wild-type than fortransgenic plants. This could be due to an enhanced osmoticadjustment in the transgenic plants. Moreover, these transgenicplants accumulate more Na+ and K+ in their leaf tissue thanthe wild-type plants. The toxic effect of Na+ accumulation inthe cytosol is reduced by its sequestration into the vacuole.The rate of water loss under drought or salt stress was higherin wild-type than transgenic plants. Increased vacuolar soluteaccumulation and water retention could confer the phenotypeof salt and drought tolerance of the transgenic plants. Overexpressionof the isolated genes from wheat in Arabidopsis thaliana plantsis worthwhile to elucidate the contribution of these proteinsto the tolerance mechanism to salt and drought. Adopting a similarstrategy could be one way of developing transgenic staple cropswith improved tolerance to these important abiotic stresses. Key words: H+-pyrophosphatase, Na+/H+ antiporter, salt and drought tolerance, sodium sequestration, transgenic Arabidopsis plants  相似文献   

2.
3.
We engineered a salt-sensitive rice cultivar (Oryza sativa cv. Kinuhikari) to express a vacuolar-type Na+/H+ antiporter gene from a halophytic plant, Atriplex gmelini (AgNHX1). The activity of the vacuolar-type Na+/H+ antiporter in the transgenic rice plants was eight-fold higher than that in wild-type rice plants. Salt tolerance assays followed by non-stress treatments showed that the transgenic plants overexpressing AgNHX1 could survive under conditions of 300 mM NaCl for 3 days while the wild-type rice plants could not. These results indicate that overexpression of the Na+/H+ antiporter gene in rice plants significantly improves their salt tolerance.  相似文献   

4.
A vacuole Na+/H+ antiporter gene TaNHX2 was obtained by screening the wheat cDNA library and by the 5'-RACE method. The expression of TaNHX2 was induced in roots and leaves by treatment with NaCl, polyethylene glycol (PEG), cold and abscisic acid (ABA). When expressed in a yeast mutant (deltanhx1), TaNHX2 suppressed the salt sensitivity of the mutant,which was deficient in vacuolar Na+/H+ antiporter, and caused partial recovery of growth of delta nhx1 in NaCl and LiCl media. The survival rate of yeast cells was improved by overexpressing the TaNHX2 gene under NaCl, KCl, sorbitol and freezing stresses when compared with the control. The results imply that TaNHX2 might play an important role in salt and osmotic stress tolerance in plant cells.  相似文献   

5.

Key message

Expression of a truncated form of wheat TdSOS1 in Arabidopsis exhibited an improved salt tolerance. This finding provides new hints about this protein that can be considered as a salt tolerance determinant.

Abstract

The SOS signaling pathway has emerged as a key mechanism in preserving the homeostasis of Na+ and K+ under saline conditions. We have recently identified and functionally characterized, by complementation studies in yeast, the gene encoding the durum wheat plasma membrane Na+/H+ antiporter (TdSOS1). To extend these functional studies to the whole plant level, we complemented Arabidopsis sos1-1 mutant with wild-type TdSOS1 or with the hyperactive form TdSOS1?972 and compared them to the Arabidopsis AtSOS1 protein. The Arabidopsis sos1-1 mutant is hypersensitive to both Na+ and Li+ ions. Compared with sos1-1 mutant transformed with the empty binary vector, seeds from TdSOS1 or TdSOS1?972 transgenic plants had better germination under salt stress and more robust seedling growth in agar plates as well as in nutritive solution containing Na+ or Li+ salts. The root elongation of TdSOS1?972 transgenic lines was higher than that of Arabidopsis sos1-1 mutant transformed with TdSOS1 or with the endogenous AtSOS1 gene. Under salt stress, TdSOS1?972 transgenic lines showed greater water retention capacity and retained low Na+ and high K+ in their shoots and roots. Our data showed that the hyperactive form TdSOS1?972 conferred a significant ionic stress tolerance to Arabidopsis plants and suggest that selection of hyperactive alleles of the SOS1 transport protein may pave the way for obtaining salt-tolerant crops.  相似文献   

6.
The functional analysis of the sodium exchanger SOS1 from wheat, TaSOS1, was undertaken using Saccharomyces cerevisiae as a heterologous expression system. The TaSOS1 protein, with significant sequence homology to SOS1 sodium exchangers from Arabidopsis and rice, is abundant in roots and leaves, and is induced by salt treatment. TaSOS1 suppressed the salt sensitivity of a yeast strain lacking the major Na+ efflux systems by decreasing the cellular Na+ content while increasing K+ content. Na+/H+ exchange activity of purified plasma membrane from yeast cells expressing TaSOS1 was higher than controls transformed with empty vector. These results demonstrate that TaSOS1 contributes to plasma membrane Na+/H+ exchange.  相似文献   

7.
8.
Reconstitution of a bacterial Na+/H+ antiporter   总被引:1,自引:0,他引:1  
Membrane proteins from alkalophilic Bacillus firmus RAB were extracted with octylglucoside, reconstituted into liposomes made from alkalophile lipids. The proteoliposomes were loaded with 22Na+. Imposition of a valinomycin-mediated potassium diffusion potential, positive out, resulted in very rapid efflux of radioactive Na+ against its electrochemical gradient. That the Na+ efflux was mediated by the electrogenic Na+/H+ antiporter is indicated by the following characteristics that had been established for the porter in previous studies: dependence upon an electrical potential; pH sensitivity, with activity dependent upon an alkaline pH; inhibition by Li+; and an apparent concentration dependence upon Na+ that correlated well with measurements in cells and membrane vesicles.  相似文献   

9.
Guo  Wenfang  Li  Gangqiang  Wang  Nan  Yang  Caifeng  Zhao  Yanan  Peng  Huakang  Liu  Dehu  Chen  Sanfeng 《Plant molecular biology》2020,102(4-5):553-567
Plant Molecular Biology - Overexpression of K2-NhaD in transgenic cotton resulted in phenotypes with strong salinity and drought tolerance in greenhouse and field experiments, increased expression...  相似文献   

10.
Abiotic stresses such as salinity and drought have adverse effects on plants. In the present study, a Na+/H+ antiporter gene homologue (LfNHX1) has been cloned from a local halophyte grass (Leptochloa fusca). The LfNHX1 cDNA contains an open reading frame of 1,623 bp that encodes a polypeptide chain of 540 amino acid residues. LfNHX1 protein sequence showed high similarity with NHX1 homologs reported from other halophyte plants. Amino acid and nucleotide sequence similarity, protein topology modeling and the presence of conserved functional domains in the LfNHX1 protein sequence classified it as a vacuolar NHX1 homolog. The overexpression of LfNHX1 gene under CaMV35S promoter conferred salt and drought tolerance in tobacco plants. Under drought stress, transgenic plants showed higher relative water contents, photosynthetic rate, stomatal conductance and membrane stability index as compared to wild type plants. More negative value of leaf osmotic potential was also observed in transgenic plants when compared with wild type control plants. Transgenic plants showed better germination and root growth at 2 mg L?1 Basta herbicide and three levels (100, 200 and 250 mM) of sodium chloride. These results showed that LfNHX1 is a potential candidate gene for enhancing drought and salt tolerance in crops.  相似文献   

11.
Qiao WH  Zhao XY  Li W  Luo Y  Zhang XS 《Plant cell reports》2007,26(9):1663-1672
Agropyron elongatum, a species in grass family, has a strong tolerance to salt stress. To study the molecular mechanism of Agropyron elongatum in salt tolerance, we isolated a homolog of Na+/H+ antiporters from the root tissues of Agropyron plants. Sequence analysis revealed that this gene encodes a putative vacuolar Na+/H+ antiporter and was designated as AeNHX1. The AeNHX1–GFP fusion protein was clearly targeted to the vacuolar membrane in a transient transfection assay. Northern analysis indicated that AeNHX1 was expressed in a root-specific manner. Expression of AeNHX1 in yeast Na+/H+ antiporter mutants showed function complementation. Further, overexpression of AeNHX1 promoted salt tolerance of Arabidopsis plants, and improved osmotic adjustment and photosynthesis which might be responsible for normal development of transgenic plants under salt stress. Similarly, AeNHX1 also functioned in transgenic Festuca plants. The results suggest that this gene might function in the roots of Agropyron plants, and its expression is involved in the improvement of salt tolerance.  相似文献   

12.
The functional expression of membrane transport proteins that are responsible for exchanging sodium and protons is a ubiquitous phenomenon. Among vertebrates the Na+/H+ antiporter occurs in plasma membranes of polarized epithelial cells and non-polarized cells such as red blood cells, muscle cells, and neurons, and in each cell type the transporter exchanges one sodium for one hydrogen ion, is inhibited by amiloride, and regulates intracellular pH and sodium concentration within tight limitations. In polarized epithelial cells this transporter occurs in two isoforms, each of which is restricted to either the brush border or basolateral cell membrane, and perform somewhat different tasks in the two locations. In prokaryotic cells, sodium/proton exchange occurs by an electrogenic 1Na+/2H+ antiporter that is coupled to a primary active proton pump and together these two proteins are capable of tightly regulating the intracellular concentrations of these cations in cells that may occur in environments of 4 M NaCl or pH 10-12. Invertebrate epithelial cells from the gills, gut, and kidney also exhibit electrogenic sodium/proton exchange, but in this instance the transport stoichiometry is 2Na+/1H+. As with vertebrate electroneutral Na+/H+ exchange, the invertebrate transporter is inhibited by amiloride, but because of the occurrence of two external monovalent cation binding sites, divalent cations are able to replace external sodium and also be transported by this system. As a result, both calcium and divalent heavy metals, such as zinc and cadmium, are transported across epithelial brush border membranes in these animals and subsequently undergo a variety of biological activities once accumulated within these cells. Absorbed epithelial calcium in the crustacean hepatopancreas may participate in organismic calcium balance during the molt cycle and accumulated heavy metals may undergo complexation reactions with intracellular anions as a detoxification mechanism. Therefore, while the basic process of sodium/proton exchange may occur in invertebrate cells, the presence of the electrogenic 2Na+/1H+ antiporter in these cells allows them to perform a wide array of functions without the need to develop and express additional specialized transport proteins. J. Exp. Zool. 289:232-244, 2001.  相似文献   

13.
利用RACE技术得到碱地肤KsNHX1的3'cDNA序列,分子系统进化分析显示,KsNHX1为液泡膜Na+/H+逆向转运蛋白编码基因.通过半定量RT-PCR检测了该基因在盐碱胁迫下的表达,结果表明:200 mmol·L-1 NaCl胁迫2~24h,KsNHX1在叶片中表达量持续增加;200 mmol·L-1 NaCl处理10 h,KsNHX1在根、茎、叶和花中的表达都上调;不同浓度NaCl处理下,叶片中KsNHX1表达上调,160 mmol·L-1时达到最高;低于400 mmol·L-1浓度下,根中该基因的表达也都上调.经不同浓度Na2CO3胁迫,根中KsNHX1的表达变化趋势与相应浓度NaCl胁迫下的变化相同;但叶片中除160 mmol·L-1 Na,CO3处理下KsNHX1表达略有上调外,其他浓度下KsNHX1的表达都低于对照.KsNHX1的表达模式暗示,在不同盐碱胁迫下,碱地肤能够维持体内相对稳定的K+/Na+,其耐盐特性可能与Na+/H+逆向转运蛋白的作用密切相关.  相似文献   

14.
15.
Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na+/H+ antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4 % identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na+ and accumulate more K+. Expression of HtSOS1 decreased Na+ content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.  相似文献   

16.
Environmental stress factors such as salt, drought and heat are known to affect plant productivity. However, high salinity is spreading throughout the world, currently affecting more than 45 million ha. One of the mechanisms that allow plants to withstand salt stress consists on vacuolar sequestration of Na+, through a Na+/H+ antiporter. We isolated a new vacuolar Na+/H+ antiporter from Eucalyptus globulus from a cDNA library. The cDNA had a 1626 bp open reading frame encoding a predicted protein of 542 amino acids with a deduced molecular weight of 59.1 KDa. Phylogenetic and bioinformatic analyses indicated that EgNHX1 localized in the vacuole. To assess its role in Na+ exchange, we performed complementation studies using the Na+ sensitive yeast mutant strain Δnhx1. The results showed that EgNHX1 partially restored the salt sensitive phenotype of the yeast Δnhx1 strain. However, its overexpression in transgenic Arabidopsis confers tolerance in the presence of increasing NaCl concentrations while the wild type plants exhibited growth retardation. Expression profiles of Eucalyptus seedlings subjected to salt, drought, heat and ABA treatment were established. The results revealed that Egnhx1 was induced significantly only by drought. Together, these results suggest that the product of Egnhx1 from E. globulus is a functional vacuolar Na+/H+ antiporter.  相似文献   

17.
Soil salinity is a major environmental stress limiting plant productivity. Vacuole Na+/H+ antiporters play important roles for the survival of plants under salt stress conditions. We have developed salt stress tolerant transgenic tomato plants (Solanum lycopersicum cv. PED) by overexpression of the wheat Na+/H+ antiporter gene TaNHX2 using Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBin438 that contains the TaNHX2 gene under the control of double CaMV 35S promoter and npt II as a selectable marker. PCR and Southern blot analysis confirmed that TaNHX2 gene has been integrated and expressed in the T1 generation transgenic tomato plants. When TaNHX2 expressing plants were exposed to 100 or 150 mM NaCl, they were found to be more tolerant to salt stress compared to wild type plants. Biochemical analyses also showed that transgenic plants have substantial amount of relative water content and chlorophyll content under salt stress conditions compared to wild type plants. The relative water content in transgenic and wild type plants ranged from 68 to 75 % and 46–73 % and chlorophyll content fall in between 1.8 to 2.4 mg/g fw and 1.0 to 2.4 mg/g fw, respectively, in all stress conditions. In the present study, we observed a better germination rate of T1 transgenic seeds under salt stress conditions compared with wild type plants. Our results indicated that TaNHX2-transgenic tomato plants coped better with salt stress than wild type plants.  相似文献   

18.
Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+/solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号