首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(12):1424-1433
Under normal growth conditions the mammalian target of rapamycin complex 1 (mTORC1) negatively regulates the central autophagy regulator complex consisting of Unc-51-like kinases 1/2 (Ulk1/2), focal adhesion kinase family-interacting protein of 200 kDa (FIP200) and Atg13. Upon starvation, mTORC1-mediated repression of this complex is released, which then leads to Ulk1/2 activation. In this scenario, Atg13 has been proposed as an adaptor mediating the interaction between Ulk1/2 and FIP200 and enhancing Ulk1/2 kinase activity. Using Atg13-deficient cells, we demonstrate that Atg13 is indispensable for autophagy induction. We further show that Atg13 function strictly depends on FIP200 binding. In contrast, the simultaneous knockout of Ulk1 and Ulk2 did not have a similar effect on autophagy induction. Accordingly, the Ulk1-dependent phosphorylation sites we identified in Atg13 are expendable for this process. This suggests that Atg13 has an additional function independent of Ulk1/2 and that Atg13 and FIP200 act in concert during autophagy induction.  相似文献   

2.
Under normal growth conditions the mammalian target of rapamycin complex 1 (mTORC1) negatively regulates the central autophagy regulator complex consisting of Unc-51-like kinases 1/2 (Ulk1/2), focal adhesion kinase family-interacting protein of 200 kDa (FIP200) and Atg13. Upon starvation, mTORC1-mediated repression of this complex is released, which then leads to Ulk1/2 activation. In this scenario, Atg13 has been proposed as an adaptor mediating the interaction between Ulk1/2 and FIP200 and enhancing Ulk1/2 kinase activity. Using Atg13-deficient cells, we demonstrate that Atg13 is indispensable for autophagy induction. We further show that Atg13 function strictly depends on FIP200 binding. In contrast, the simultaneous knockout of Ulk1 and Ulk2 did not have a similar effect on autophagy induction. Accordingly, the Ulk1-dependent phosphorylation sites we identified in Atg13 are expendable for this process. This suggests that Atg13 has an additional function independent of Ulk1/2 and that Atg13 and FIP200 act in concert during autophagy induction.  相似文献   

3.
《Autophagy》2013,9(8):924-926
Ulk1 is a serine/threonine kinase and the mammalian functional homolog of yeast Atg1. It acts at the initiation step of autophagy and forms a complex with mAtg13, FIP200 and Atg101. Assembly of this complex is independent of mTOR signaling, indicating the regulation of autophagy initiation in mammals is different from that in yeast. In a recent study, we reported that Ulk1 can be phosphorylated by mTOR and AMPK kinases. AMPK associates with Ulk1 in nutrient-dependent manner. Rapid dissociation between Ulk1 and AMPK primes cells for fast autophagy induction upon nutrient withdrawal. These studies show that both mTOR and AMPK directly regulate Ulk1 and coordinate the mammalian autophagy initiation.  相似文献   

4.
Shang L  Wang X 《Autophagy》2011,7(8):924-926
Ulk1 is a serine/threonine kinase and the mammalian functional homolog of yeast Atg1. It acts at the initiation step of autophagy and forms a complex with mAtg13, FIP200 and Atg101. Assembly of this complex is independent of mTOR signaling, indicating the regulation of autophagy initiation in mammals is different from that in yeast. In a recent study, we reported that Ulk1 can be phosphorylated by mTOR and AMPK kinases. AMPK associates with Ulk1 in nutrient-dependent manner. Rapid dissociation between Ulk1 and AMPK primes cells for fast autophagy induction upon nutrient withdrawal. These studies show that both mTOR and AMPK directly regulate Ulk1 and coordinate the mammalian autophagy initiation.  相似文献   

5.
Hara T  Mizushima N 《Autophagy》2009,5(1):85-87
The yeast serine threonine kinase Atg1 appears to be a key regulator of autophagy and its kinase activity is crucial for autophagy induction. Recent reports have indicated that a mammalian Atg1 homolog, UNC-51-like kinase (ULK) 1, is required for autophagy. We found that ULK1 localizes to the autophagic isolation membrane and its kinase activity is important for autophagy induction. Furthermore, we identified a focal adhesion kinase (FAK) family interacting protein of 200 kD (FIP200) as a ULK-interacting protein. FIP200 also localizes to the isolation membrane together with ULK. Using FIP200-deficient cells, we found that FIP200 is essential for autophagosome formation and the proper function of ULK. Here, we discuss the role of the ULK-FIP200 complex in autophagy and the possibility that FIP200 functions as a mammalian counterpart of Atg17.  相似文献   

6.
《Autophagy》2013,9(1):85-87
The yeast serine threonine kinase Atg1 appears to be a key regulator of autophagy and its kinase activity is crucial for autophagy induction. Recent reports have indicated that a mammalian Atg1 homolog, UNC-51-like kinase (ULK) 1, is required for autophagy. We found that ULK1 localizes to the autophagic isolation membrane and its kinase activity is important for autophagy induction. Furthermore, we identified a focal adhesion kinase (FAK) family interacting protein of 200 kD (FIP200) as a ULK-interacting protein. FIP200 also localizes to the isolation membrane together with ULK. Using FIP200-deficient cells, we found that FIP200 is essential for autophagosome formation and the proper function of ULK. Here, we discuss the role of the ULK-FIP200 complex in autophagy and the possibility that FIP200 functions as a mammalian counterpart of Atg17.  相似文献   

7.
The TOR kinases are conserved negative regulators of autophagy in response to nutrient conditions, but the signaling mechanisms are poorly understood. Here we describe a complex containing the protein kinase Atg1 and the phosphoprotein Atg13 that functions as a critical component of this regulation in Drosophila. We show that knockout of Atg1 or Atg13 results in a similar, selective defect in autophagy in response to TOR inactivation. Atg1 physically interacts with TOR and Atg13 in vivo, and both Atg1 and Atg13 are phosphorylated in a nutrient-, TOR- and Atg1 kinase-dependent manner. In contrast to yeast, phosphorylation of Atg13 is greatest under autophagic conditions and does not preclude Atg1-Atg13 association. Atg13 stimulates both the autophagic activity of Atg1 and its inhibition of cell growth and TOR signaling, in part by disrupting the normal trafficking of TOR. In contrast to the effects of normal Atg13 levels, increased expression of Atg13 inhibits autophagosome expansion and recruitment of Atg8/LC3, potentially by decreasing the stability of Atg1 and facilitating its inhibitory phosphorylation by TOR. Atg1-Atg13 complexes thus function at multiple levels to mediate and adjust nutrient-dependent autophagic signaling.  相似文献   

8.
ATG13     
《Autophagy》2013,9(6):944-956
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.  相似文献   

9.
During the past 20 years, autophagy signaling has entered the main stage of the cell biological theater. Autophagy represents an intracellular degradation process that is involved in both the bulk recycling of cytoplasmic components and the selective removal of organelles, protein aggregates, or intracellular pathogens. The understanding of autophagy has been greatly facilitated by the characterization of the molecular machinery governing this process. In yeast, initiation of autophagy is controlled by the Atg1 kinase complex, which is composed of the Ser/Thr kinase Atg1, the adaptor protein Atg13, and the ternary complex of Atg17-Atg31-Atg29. In vertebrates, the orthologous ULK1 kinase complex contains the Ser/Thr kinase ULK1 and the accessory proteins ATG13, RB1CC1, and ATG101. Among these components, Atg1/ULK1 have gained major attention in the past, i.e., for the identification of upstream regulatory kinases, the characterization of downstream substrates controlling the autophagic flux, or as a druggable target for the modulation of autophagy. However, accumulating data indicate that the function of Atg13/ATG13 has been likely underestimated so far. In addition to ensuring proper Atg1/ULK1 recruitment and activity, this adaptor molecule has been implicated in ULK1-independent autophagy processes. Furthermore, recent data have identified additional binding partners of Atg13/ATG13 besides the components of the Atg1/ULK1 complex, e.g., Atg8 family proteins or acidic phospholipids. Therefore, in this review we will center the spotlight on Atg13/ATG13 and summarize the role that Atg13/ATG13 assumes in the autophagy stage play.  相似文献   

10.
To survive extreme environmental conditions, and in response to certain developmental and pathological situations, eukaryotic organisms employ the catabolic process of autophagy. Structures targeted for destruction are enwrapped by double-membrane vesicles, then delivered into the interior of the lysosome/vacuole. Despite the identification of many specific components, the molecular mechanism that directs formation of the sequestering vesicles remains largely unknown. We analyzed the trafficking of Atg23 and the integral membrane protein Atg9 in the yeast Saccharomyces cerevisiae. These components localize both to the pre-autophagosomal structure (PAS) and other cytosolic punctate compartments. We show that Atg9 and Atg23 cycle through the PAS in a process governed by the Atg1-Atg13 signaling complex. Atg1 kinase activity is essential only for retrograde transport of Atg23, while recycling of Atg9 requires additional factors including Atg18 and Atg2. We postulate that Atg9 employs a recycling system mechanistically similar to that used at yeast early and late endosomes.  相似文献   

11.
《Autophagy》2013,9(7):696-706
Unc-51-like kinase 1 (Ulk1) plays a central role in autophagy induction. It forms a stable complex with Atg13 and focal adhesion kinase (FAK) family interacting protein of 200 kDa (FIP 200). This complex is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1) in a nutrient-dependent way. AMP-activated protein kinase (AMPK), which is activated by LKB1/Strad/Mo25 upon high AMP levels, stimulates autophagy by inhibiting mTORC1. Recently, it has been described that AMPK and Ulk1 interact and that the latter is phosphorylated by AMPK. This phosphorylation leads to the direct activation of Ulk1 by AMPK bypassing mTOR-inhibition. Here we report that Ulk1/2 in turn phosphorylates all three subunits of AMPK and thereby negatively regulates its activity. Thus, we propose that Ulk1 is not only involved in the induction of autophagy, but also in terminating signaling events that trigger autophagy. In our model, phosphorylation of AMPK by Ulk1 represents a negative feedback circuit.  相似文献   

12.
Unc-51-like kinase 1 (Ulk1) plays a central role in autophagy induction. It forms a stable complex with Atg13 and focal adhesion kinase (FAK) family interacting protein of 200 kDa (FIP 200). This complex is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1) in a nutrient-dependent way. AMP-activated protein kinase (AMPK), which is activated by LKB1/Strad/Mo25 upon high AMP levels, stimulates autophagy by inhibiting mTORC1. Recently, it has been described that AMPK and Ulk1 interact and that the latter is phosphorylated by AMPK. This phosphorylation leads to the direct activation of Ulk1 by AMPK bypassing mTOR-inhibition. Here we report that Ulk1/2 in turn phosphorylates all three subunits of AMPK and thereby negatively regulates its activity. Thus, we propose that Ulk1 is not only involved in the induction of autophagy, but also in terminating signaling events that trigger autophagy. In our model, phosphorylation of AMPK by Ulk1 represents a negative feedback circuit.  相似文献   

13.
Autophagy is a conserved catabolic process that utilizes a defined series of membrane trafficking events to generate a de novo double-membrane vesicle termed the autophagosome, which matures by fusing to the lysosome. Subsequently, the lysosome facilitates the degradation and recycling of the cytoplasmic cargo. In yeast, the upstream signals that regulate the induction of starvation-induced autophagy are clearly defined. The nutrient-sensing kinase Tor inhibits the activation of autophagy by regulating the formation of the Atg1-Atg13-Atg17 complex, through hyperphosphorylation of Atg13. However, in mammals, the ortholog complex ULK1-ATG13-FIP200 is constitutively formed. As such, the molecular mechanism by which mTOR regulates mammalian autophagy is unknown. Here we report the identification and characterization of novel nutrient-regulated phosphorylation sites on ATG13: Ser-224 and Ser-258. mTOR directly phosphorylates ATG13 on Ser-258 while Ser-224 is modulated by the AMPK pathway. In ATG13 knock-out cells reconstituted with an unphosphorylatable mutant of ATG13, ULK1 kinase activity is more potent, and amino acid starvation induced more rapid ATG13 and ULK1 translocation. These events culminated in a more rapid starvation-induced autophagy response. Therefore, ATG13 phosphorylation plays a crucial role in autophagy regulation.  相似文献   

14.
Autophagy, the primary recycling pathway of cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the response to cellular stress. The Hsp90-Cdc37 chaperone complex coordinately regulates the activity of select kinases to orchestrate many facets of the stress response. Although both maintain mitochondrial integrity, the relationship between Hsp90-Cdc37 and autophagy has not been well characterized. Ulk1, one of the mammalian homologs of yeast Atg1, is a serine-threonine kinase required for mitophagy. Here we show that the interaction between Ulk1 and Hsp90-Cdc37 stabilizes and activates Ulk1, which in turn is required for the phosphorylation and release of Atg13 from Ulk1, and for the recruitment of Atg13 to damaged mitochondria. Hsp90-Cdc37, Ulk1, and Atg13 phosphorylation are all required for efficient mitochondrial clearance. These findings establish a direct pathway that integrates Ulk1- and Atg13-directed mitophagy with the stress response coordinated by Hsp90 and Cdc37.  相似文献   

15.
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.  相似文献   

16.
Autophagy is a highly regulated trafficking pathway that leads to selective degradation of cellular constituents such as protein aggregates and excessive and damaged organelles. Atg1 is an essential part of the core autophagic machinery, which triggers induction of autophagy and the Cvt pathway. Although changes in Atg1 phosphorylation and complex formation are thought to regulate its function, the mechanism of Atg1 kinase activation remains unclear. Using a quantitative mass spectrometry approach, we identified 29 phosphorylation sites, of which five are either upregulated or downregulated by rapamycin treatment. Two phosphorylation sites, threonine 226 and serine 230, are evolutionarily conserved and located in the activation loop of the amino terminal kinase domain of Atg1. These phosphorylation events are not required for Atg1 localization to the phagosome assembly site (PAS), or the proper assembly of the multisubunit Atg1 kinase complex and binding to its activator Atg13. However, mutation of either one of these sites results in a loss of Atg1 kinase activity and its function in autophagy and the Cvt pathway. Taken together, our data suggest that phosphorylation of Atg1 on multiple sites provides critical mechanisms to regulate Atg1 function in autophagy and the Cvt pathway.  相似文献   

17.
《Autophagy》2013,9(8):1168-1178
Autophagy is a highly regulated trafficking pathway that leads to selective degradation of cellular constituents such as protein aggregates and excessive and damaged organelles. Atg1 is an essential part of the core autophagic machinery, which triggers induction of autophagy and the Cvt pathway. Although changes in Atg1 phosphorylation and complex formation are thought to regulate its function, the mechanism of Atg1 kinase activation remains unclear. Using a quantitative mass spectrometry approach, we identified 29 phosphorylation sites, of which five are either upregulated or downregulated by rapamycin treatment. Two phosphorylation sites, threonine 226 and serine 230, are evolutionarily conserved and located in the activation loop of the amino terminal kinase domain of Atg1. These phosphorylation events are not required for Atg1 localization to the phagosome assembly site (PAS), or the proper assembly of the multisubunit Atg1 kinase complex and binding to its activator Atg13. However, mutation of either one of these sites results in a loss of Atg1 kinase activity and its function in autophagy and the Cvt pathway. Taken together, our data suggest that phosphorylation of Atg1 on multiple sites provides critical mechanisms to regulate Atg1 function in autophagy and the Cvt pathway.  相似文献   

18.
The proteins that comprise the Atg1 kinase complex constitute a key set of components that participate in macroautophagy (hereafter autophagy). Among these proteins, Atg13 plays a particularly important, although as yet undefined role, in that it is critical for the proper localization of Atg1 to the phagophore assembly site (PAS) and its efficient kinase activity. Atg13 is hyperphosphorylated in vegetative conditions when autophagy occurs at a basal level, and is largely dephosphorylated upon the induction of autophagy. Inhibitory phosphorylation of Atg13 reflects the activity of TOR complex 1 (TORC1) and protein kinase A. Accordingly, monitoring the phosphorylation state of Atg13 provides a convenient way to follow early steps of autophagy induction as well as the activity of some of the upstream nutrient-sensing kinases. However, the detection of Atg13 by western blot can be problematic. Here, we present a detailed protocol for sample preparation and detection of the Atg13 protein from yeast.  相似文献   

19.
《Autophagy》2013,9(3):514-517
The proteins that comprise the Atg1 kinase complex constitute a key set of components that participate in macroautophagy (hereafter autophagy). Among these proteins, Atg13 plays a particularly important, although as yet undefined role, in that it is critical for the proper localization of Atg1 to the phagophore assembly site (PAS) and its efficient kinase activity. Atg13 is hyperphosphorylated in vegetative conditions when autophagy occurs at a basal level, and is largely dephosphorylated upon the induction of autophagy. Inhibitory phosphorylation of Atg13 reflects the activity of TOR complex 1 (TORC1) and protein kinase A. Accordingly, monitoring the phosphorylation state of Atg13 provides a convenient way to follow early steps of autophagy induction as well as the activity of some of the upstream nutrient-sensing kinases. However, the detection of Atg13 by western blot can be problematic. Here, we present a detailed protocol for sample preparation and detection of the Atg13 protein from yeast.  相似文献   

20.
In eukaryotic cells, nutrient starvation induces the bulk degradation of cellular materials; this process is called autophagy. In the yeast Saccharomyces cerevisiae, most of the ATG (autophagy) genes are involved in not only the process of degradative autophagy, but also a biosynthetic process, the cytoplasm to vacuole (Cvt) pathway. In contrast, the ATG17 gene is required specifically in autophagy. To better understand the function of Atg17, we have performed a biochemical characterization of the Atg17 protein. We found that the atg17delta mutant under starvation condition was largely impaired in autophagosome formation and only rarely contained small autophagosomes, whose size was less than one-half of normal autophagosomes in diameter. Two-hybrid analyses and coimmunoprecipitation experiments demonstrated that Atg17 physically associates with Atg1-Atg13 complex, and this binding was enhanced under starvation conditions. Atg17-Atg1 binding was not detected in atg13delta mutant cells, suggesting that Atg17 interacts with Atg1 through Atg13. A point mutant of Atg17, Atg17(C24R), showed reduced affinity for Atg13, resulting in impaired Atg1 kinase activity and significant defects in autophagy. Taken together, these results indicate that Atg17-Atg13 complex formation plays an important role in normal autophagosome formation via binding to and activating the Atg1 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号