首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moss TJ  Wallrath LL 《Mutation research》2007,618(1-2):163-174
Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.  相似文献   

2.
3.
4.
During development, epigenetic programs are "installed" on the genome that direct differentiation and normal tissue and organ function in adulthood. Consequently, development is also a period of susceptibility to reprogramming of the epigenome. Developmental reprogramming occurs when an adverse stimulus or insult interrupts the proper "install" of epigenetic programs during development, reprogramming normal physiologic responses in such a way as to promote disease later in life. Some of the best examples of developmental reprogramming involve the reproductive tract, where early life exposures to environmental estrogens can increase susceptibility to benign and malignant tumors in adulthood including leiomyoma (fibroids), endometrial, and prostate cancer. Although specific mechanism(s) by which environmental estrogens reprogram the developing epigenome were unknown, both DNA and histone methylation were considered likely targets for epigenetic reprogramming. We have now identified a mechanism by which developmental exposures to environmental estrogens reprogram the epigenome by inducing inappropriate activation of nongenomic estrogen receptor (ER) signaling. Activation of nongenomic ER signaling via the phosphotidylinositol-3-kinase (PI3K) pathway activates the kinase AKT/PKB in the developing reproductive tract, which phosphorylates the histone lysine methyltransferase (HKMT) EZH2, the key "installer" of epigenetic histone H3 lysine 27 trimethylation (H3K27me3). AKT phosphorylation inactivates EZH2, decreasing levels of H3K27 methylation, a repressive mark that inhibits gene expression, in the developing uterus. As a result of this developmental reprogramming, many estrogen-responsive genes become hypersensitive to estrogen in adulthood, exhibiting elevated expression throughout the estrus cycle, and resulting in a "hyper-estrogenized" phenotype in the adult uterus that promotes development of hormone-dependent tumors.  相似文献   

5.
Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type-specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type-specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation.  相似文献   

6.
7.
8.
9.
With the goal of studying epigenetic alterations in fibrolamellar hepatocellular carcinoma (FLC) and establish an associated DNA methylation signature, we analyzed LINE-1 methylation in a cohort of FLC and performed next-generation sequencing of DNA methylation in a training set of pure-FLCs and non-cirrhotic hepatocellular carcinomas (nc-HCC). DNA methylation was correlated with gene expression. Furthermore, we established and validated an epigenetic signature differentiating pure-FLC from other HCCs. LINE-1 methylation correlated with shorter recurrence-free survival and overall survival in resected pure-FLC patients. Unsupervised clustering using CG sites located in islands distinguished pure-FLC from nc-HCC. Major DNA methylation changes occurred outside promoters, mainly in gene bodies and intergenic regions located in the vicinity of liver developmental genes (i.e., SMARCA4 and RXRA). Partially methylated domains were more prone to DNA methylation changes. Furthermore, we identified several putative tumor suppressor genes (e.g., DLEU7) and oncogenes (e.g., DUSP4). While ∼70% of identified gene promoters gaining methylation were marked by bivalent histone marks (H3K4me3/H3K27me3) in embryonic stem cells, ∼70% of those losing methylation were marked by H3K4me3. Finally, we established a pure FLC DNA methylation signature and validated it in an independent dataset. Our analysis reveals a distinct epigenetic signature of pure FLC as compared to nc-HCC, with DNA methylation changes occurring in the vicinity of liver developmental genes. These data suggest new options for targeting FLC based on cancer epigenome aberrations.  相似文献   

10.
11.
Embryonic stem (ES) cells are characterized by the expression of an extensive and interconnected network of pluripotency factors which are downregulated in specialized cells. Epigenetic mechanisms, including DNA methylation and histone modifications, are also important in maintaining this pluripotency program in ES cells and in guiding correct differentiation of the developing embryo. Methylation of the cytosine base of DNA blocks gene expression in all cell types and further modifications of methylated cytosine have recently been discovered. These new modifications, putative intermediates in a pathway to erase DNA methylation marks, are catalyzed by the ten-eleven translocation (Tet) proteins, specifically by Tet1 and Tet2 in ES cells. Surprisingly, Tet1 shows repressive along with active effects on gene expression depending on its distribution throughout the genome and co-localization with Polycomb Repressive Complex 2 (PRC2). PRC2 di- and tri-methylates lysine 27 of histone 3 (H3K27me2/3 activity), marking genes for repression. In ES cells, almost all gene loci containing the repressive H3K27me3 modification also bear the active H3K4me3 modification, creating “bivalent domains” which mark important developmental regulators for timely activation. Incorporation of Tet1 into the bivalent domain paradigm is a new and exciting development in the epigenetics field, and the ramifications of this novel crosstalk between DNA and histone modifications need to be further investigated. This knowledge would aid reprogramming of specialized cells back into pluripotent stem cells and advance understanding of epigenetic perturbations in cancer.  相似文献   

12.
13.
Both DNA methylation and post-translational histone modifications contribute to gene silencing, but the mechanistic relationship between these epigenetic marks is unclear. Mutations in two Arabidopsis genes, the KRYPTONITE (KYP) histone H3 lysine 9 (H3K9) methyltransferase and the CHROMOMETHYLASE3 (CMT3) DNA methyltransferase, cause a reduction of CNG DNA methylation, suggesting that H3K9 methylation controls CNG DNA methylation. Here we show that the chromodomain of CMT3 can directly interact with the N-terminal tail of histone H3, but only when it is simultaneously methylated at both the H3K9 and H3K27 positions. Furthermore, using chromatin immunoprecipitation analysis and immunohistolocalization experiments, we found that H3K27 methylation colocalizes with H3K9 methylation at CMT3-controlled loci. The H3K27 methylation present at heterochromatin was not affected by mutations in KYP or in several Arabidopsis PcG related genes including the Enhancer of Zeste homologs, suggesting that a novel pathway controls heterochromatic H3K27 methylation. Our results suggest a model in which H3K9 methylation by KYP, and H3K27 methylation by an unknown enzyme provide a combinatorial histone code for the recruitment of CMT3 to silent loci.  相似文献   

14.
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

15.
《Epigenetics》2013,8(11):1238-1248
Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.  相似文献   

16.
17.
Epigenetic mechanisms such as DNA methylation or histone modifications are essential for the regulation of gene expression and development of tissues. Alteration of epigenetic modifications can be used as an epigenetic biomarker for diagnosis and as promising targets for epigenetic therapy. A recent study explored cancer-cell specific epigenetic biomarkers by examining different types of epigenetic modifications simultaneously. However, it was based on microarrays and reported biomarkers that were also present in normal cells at a low frequency. Here, we first analyzed multi-omics data (including ChIP-Seq data of six types of histone modifications: H3K27ac, H3K4me1, H3K9me3, H3K36me3, H3K27me3, and H3K4me3) obtained from 26 lung adenocarcinoma cell lines and a normal cell line. We identified six genes with both H3K27ac and H3K4me3 histone modifications in their promoter regions, which were not present in the normal cell line, but present in ≥85% (22 out of 26) and ≤96% (25 out of 26) of the lung adenocarcinoma cell lines. Of these genes, NUP210 (encoding a main component of the nuclear pore complex) was the only gene in which the two modifications were not detected in another normal cell line. RNA-Seq analysis revealed that NUP210 was aberrantly overexpressed among the 26 lung adenocarcinoma cell lines, although the frequency of NUP210 overexpression was lower (19.3%) in 57 lung adenocarcinoma tissue samples studied and stored in another database. This study provides a basis to discover epigenetic biomarkers highly specific to a certain cancer, based on multi-omics data at the cell population level.  相似文献   

18.
19.
Mutual antagonism between DNA methylation and H3K27me3 histone methylation suggests a dynamic crosstalk between these epigenetic marks that could help ensure correct gene expression programmes. Work from Manzo et al ( 2017 ) now shows that an isoform of de novo DNA methyltransferase DNMT3A provides specificity in the system by depositing DNA methylation at adjacent “shores” of hypomethylated bivalent CpG islands (CGI) in mouse embryonic stem cells (mESCs). DNMT3A1‐directed methylation appears to be instructive in maintaining the H3K27me3 profile at the hypomethylated bivalent CGI promoters of developmentally important genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号