首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Social insect colonies face the challenge of adjusting the behavior of individuals performing various tasks to a changing environment. It has been shown in several species that characteristics of interaction patterns between nestmates provide social information that allows individuals to adjust their behavior in adaptive ways. A well-studied example is the modulation of recruitment by dancing in honeybees ( Apis mellifera ) in response to the time, the foragers have to search for unloading partners and the number of unloading bees. Here we tested if experiences that hive bees acquired during past social interactions affect interactions with the incoming foragers. Bees returning with food containing a floral scent that was familiar to the hive bees from previous interactions had more food receivers during unloading and more followers during dancing displays compared with foragers returning with food containing a novel scent or unscented food. We also confirm that the number of receivers during food unloading is positively related to the motivation to dance immediately after unloading. Our results show that prior social experiences affect the ways in which individuals interact in the context of honeybee nectar collection and, therefore, how learning in hive bees contributes to the organization of this collective task.  相似文献   

2.
Social learning of floral odours inside the honeybee hive   总被引:11,自引:0,他引:11  
A honeybee hive serves as an information centre in which communication among bees allows the colony to exploit the most profitable resources in a continuously changing environment. The best-studied communication behaviour in this context is the waggle dance performed by returning foragers, which encodes information about the distance and direction to the food source. It has been suggested that another information cue, floral scents transferred within the hive, is also important for recruitment to food sources, as bee recruits are more strongly attracted to odours previously brought back by foragers in both honeybees and bumble-bees. These observations suggested that honeybees learn the odour from successful foragers before leaving the hive. However, this has never been shown directly and the mechanisms and properties of the learning process remain obscure. We tested the learning and memory of recruited bees in the laboratory using the proboscis extension response (PER) paradigm, and show that recruits indeed learn the nectar odours brought back by foragers by associative learning and retrieve this memory in the PER paradigm. The associative nature of this learning reveals that information was gained during mouth-to-mouth contacts among bees (trophallaxis). Results further suggest that the information is transferred to long-term memory. Associative learning of food odours in a social context may help recruits to find a particular food source faster.  相似文献   

3.
Summary Kin recognition and nepotism between honeybee workers (Apis mellifera L.) was analysed in a trophallactic bio-assay. Donor workers were fed dyed sugar syrup and introduced into a recipient group consisting of 12 to 15 workers of the same colony. After allowing for 1 hour of trophallaxis, the distribution of the dyed food was analysed with spectrophotometry. The subfamily composition in the recipient group was varied such that the donor bees had to discriminate between workers of 2 to 7 different patrilines. Donor bees preferentially fed super sisters if few patrilines were present in the recipient group. However, preferential feeding was not observed if the recipient group consisted of workers of more than three subfamilies. Since the natural degree of polyandry causes intracolonial genetic variance to exceed the genetic variability in the experiments, nepotistic behaviour among workers may not reveal intranidal subfamily recognition in honeybees.  相似文献   

4.
Trophallaxis (i.e. the exchange of alimentary liquid among colony members) plays a major role in the societies of many social Hymenoptera. Food is often not equally distributed among nestmates but instead is directed towards more dominant individuals by means of trophallaxis. Antagonistic behaviour can be associated with the exchange of food, or aggression may trigger the offering of food, even where social food exchange does not normally occur. In orphaned colonies of the ponerine ant, Ponera coarctata, workers interact aggressively at a high frequency. They establish hierarchies soon after the removal of the reproductive queen. One of the consequences of aggression among workers is trophallaxis, which also occurs regularly, although less frequently, in queenright colonies. The connection of trophallaxis and aggression in Ponera coarctata and in many other species of the Hymenoptera is discussed. This study and various other examples show that, besides the nutritional function of trophallaxis, the offering of food may often serve as an appeasement behaviour during aggressive interactions. We speculate that appeasing food offers may have provided the basis for the further evolution and elaboration of trophallaxis in many social Hymenoptera.  相似文献   

5.
Summary European and African subspecies of honeybees (Apis mellifera L.) utilize social encapsulation to contain the small hive beetle (Aethina tumida Murray), a honeybee colony scavenger. Using social encapsulation, African honeybees successfully limit beetle reproduction that can devastate host colonies. In sharp contrast, European honeybees often fail to contain beetles, possibly because their social encapsulation skills may be less developed than those of African honeybees. In this study, we quantify beetle and European honeybee behaviours associated with social encapsulation, describe colony and time (morning and evening) differences in these behaviours (to identify possible circadian rhythms), and detail intra-colonial, encapsulated beetle distributions. The data help explain the susceptibility of European honeybees to depredation by small hive beetles. There were significant colony differences in a number of social encapsulation behaviours (the number of beetle prisons and beetles per prison, and the proportion of prison guard bees biting at encapsulated beetles) suggesting that successful encapsulation of beetles by European bees varies between colonies. We also found evidence for the existence of circadian rhythms in small hive beetles, as they were more active in the evening rather than morning. In response to increased beetle activity during the evening, there was an increase in the number of prison guard bees during evening. Additionally, the bees successfully kept most (~93%) beetles out of the combs at all times, suggesting that social encapsulation by European honeybees is sufficient to control small populations of beetles (as seen in this study) but may ultimately fail if beetle populations are high.Received 20 January 2003; revised 21 April 2003; accepted 29 April 2003.  相似文献   

6.
Obtaining the correct balance of nutrients requires that the brain integrates information about the body’s nutritional state with sensory information from food to guide feeding behaviour. Learning is a mechanism that allows animals to identify cues associated with nutrients so that they can be located quickly when required. Feedback about nutritional state is essential for nutrient balancing and could influence learning. How specific this feedback is to individual nutrients has not often been examined. Here, we tested how the honeybee’s nutritional state influenced the likelihood it would feed on and learn sucrose solutions containing single amino acids. Nutritional state was manipulated by pre-feeding bees with either 1 M sucrose or 1 M sucrose containing 100 mM of isoleucine, proline, phenylalanine, or methionine 24 h prior to olfactory conditioning of the proboscis extension response. We found that bees pre-fed sucrose solution consumed less of solutions containing amino acids and were also less likely to learn to associate amino acid solutions with odours. Unexpectedly, bees pre-fed solutions containing an amino acid were also less likely to learn to associate odours with sucrose the next day. Furthermore, they consumed more of and were more likely to learn when rewarded with an amino acid solution if they were pre-fed isoleucine and proline. Our data indicate that single amino acids at relatively high concentrations inhibit feeding on sucrose solutions containing them, and they can act as appetitive reinforcers during learning. Our data also suggest that select amino acids interact with mechanisms that signal nutritional sufficiency to reduce hunger. Based on these experiments, we predict that nutrient balancing for essential amino acids during learning requires integration of information about several amino acids experienced simultaneously.  相似文献   

7.
Hasegawa Y  Ikeno H 《PloS one》2011,6(5):e19619
It is well known that honeybees share information related to food sources with nestmates using a dance language that is representative of symbolic communication among non-primates. Some honeybee species engage in visually apparent behavior, walking in a figure-eight pattern inside their dark hives. It has been suggested that sounds play an important role in this dance language, even though a variety of wing vibration sounds are produced by honeybee behaviors in hives. It has been shown that dances emit sounds primarily at about 250-300 Hz, which is in the same frequency range as honeybees' flight sounds. Thus the exact mechanism whereby honeybees attract nestmates using waggle dances in such a dark and noisy hive is as yet unclear. In this study, we used a flight simulator in which honeybees were attached to a torque meter in order to analyze the component of bees' orienting response caused only by sounds, and not by odor or by vibrations sensed by their legs. We showed using single sound localization that honeybees preferred sounds around 265 Hz. Furthermore, according to sound discrimination tests using sounds of the same frequency, honeybees preferred rhythmic sounds. Our results demonstrate that frequency and rhythmic components play a complementary role in localizing dance sounds. Dance sounds were presumably developed to share information in a dark and noisy environment.  相似文献   

8.
While food recruitment and foraging have been the subject of many studies, the regulation of the food sharing behaviour remains poorly understood. In this study, we focused on trophallaxis (or mouth-to-mouth food exchange) within a group of worker ants as the first step in characterizing food sharing behaviours. In particular, we wanted to investigate the influence of the type of the food on trophallaxis. We studied three food types: a 1 M sucrose solution, a solution rich in proteins and a 1 M solution of melezitose, the latter being referred to as the ants’ favourite sugar. Our results show that the type of the food influences the frequency of trophallaxis but not the duration of each food exchange. Indeed, the total number of trophallaxes differed with the type of food, whereas the duration of trophallaxis was similar regardless of the food exchanged. Furthermore, the probability of stopping an exchange per unit of time was constant and did not depend on the time the exchange had already lasted. This suggests that food distribution is principally regulated by the frequency of trophallaxis rather than the amount of food exchanged and brings new questions about the regulation of food flow between individuals.  相似文献   

9.
The aim of the present study was: to compare thermoregulatory behaviour of single honeybee workers and groups of 3–15 bees over their annual activity period and to check out whether the annual fluctuations of ambient temperature selection are correlated with phases of the colony development. Thermal behaviour of both single workers and groups of bees was recorded, using a video camera, in a thermal gradient system. Thermal preferences of the insects were tested seasonally in spring (May/June), summer (July/August) and autumn (September–November). Both single bees and small groups of bees changed their thermal behaviour in daily cycle. The season of the year had distinct effect on temperature preferences of both single honeybee workers or small groups of bees. In single honeybee workers the lowest ambient temperatures were preferred in late spring (the swarming phase) while the highest temperatures were selected during the summer (the colony growing phase). There were significant seasonal changes in ambient temperature selected by groups of honeybee workers. Groups of honeybee workers tended to prefer the lowest temperatures in late spring and the highest temperatures were selected during the summer. The day-night differences exhibited by small groups of bees in our experiments are likely to represent behavioural responses of the honeybee colony. In our experiments we proved an influence of the season of the year on the honeybees’ thermal behaviour, which might be connected with seasonal shifts of temperature regulated by the honeybee colony.  相似文献   

10.
Forager bees arriving at the hive after visiting a nectar source, unload the collected liquid food to recipient hivemates through mouth-to-mouth contact (trophallaxis). We analysed whether the main characteristics that define nectar in energetic terms, that is, rate of production (flow of solution), sucrose concentration and rate of sucrose production (sucrose flow) influence trophallactic behaviour. Individual bees trained to feed at a regulated-flow feeder offering sucrose solution were captured once the foraging visit was complete and placed in an acrylic arena with a recipient bee that had not been fed. The rate at which liquid was transferred during the subsequent trophallactic contact (transfer rate) was analysed as a function of the different solution flows and sucrose concentrations offered at the feeder. A relationship was found between transfer rate during trophallaxis and the flow of solution previously presented at the feeder. This relationship was independent of sucrose concentration when above a certain threshold value (ca. 22% weight on weight). We also analysed whether the rate of sucrose deliverance of the food source (sucrose flow) influenced the rate at which the solution was transferred. No clear relationship was found between the rate of sucrose deliverance during trophallactic events (sucrose transfer rate) and the sucrose flow presented at the feeder. The possibility that trophallaxis could be a communication channel through which quantitative information on food source profitability is transmitted among hivemates is discussed. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

11.
Terrestrial organisms need to limit evaporation from their bodies in order to maintain a homeostatic water balance. Owing to a large surface to volume ratio, arthropods are particularly susceptible to desiccation and have evolved behavioural and physiological mechanisms to conserve water. In social insects, water balance is also affected by the interactions between nestmates and by the architecture of the nest. For honeybees, humidity is particularly important for the brood because it affects the hatching success of eggs and because, unlike ants, honeybees cannot relocate their brood to parts of the nest with more favourable humidity. To advance the understanding of the water economy in honeybee nests, we investigated whether workers exhibit a hygropreference when exposed to a gradient of 24-90% relative humidity (RH) and whether the expression of this preference and their behaviour is affected by the presence of brood. The results show that young honeybee workers in the absence of brood exhibit a weak hygropreference for approximately 75% RH. When brood is present the expression of this preference is further weakened, suggesting that workers tend to the brood by distributing evenly in the gradient. In addition, fanning behaviour is shown to be triggered by an increase in humidity above the preferred level but not by a decrease. Our results suggest that humidity in honeybee colonies is actively controlled by workers.  相似文献   

12.
Circle‐tube experiments have been widely used to both examine nestmate recognition in social and solitary insects, as well as to characterise interactions in terms of agonism, cooperation, and avoidance. Despite their use in studies of halictid bees, carpenter bees, adrenid bees, and wasps, they have never been used to explore social interactions in the bee tribe Allodapini, where sociality varies widely in terms of complexity. Here, we investigate behaviours displayed within the highly eusocial allodapine Exoneurella tridentata and the facultatively social Exoneura robusta, using a standardised circle‐tube apparatus. We present two broad and important results: (i) Discrimination between nestmates and non‐nestmates is much more strongly expressed in the facultatively social species and (ii) principal components analyses do not indicate suites of behaviours that permit clear interpretations as being agonistic, cooperative, or avoidance. Our first set of results suggests that nestmate recognition is not an essential ability for social species. Our second set of results raise important questions about a priori functional categorisations of behaviours and whether these can be used to reliably classify observed behaviours as either avoidance, cooperation, or aggression. Our analyses highlight the risks of interpreting social insect interactions and call for a more cautious approach.  相似文献   

13.
Previous evidence indicates that the recognition of the nectar delivered by forager honeybees within the colony may have been a primitive method of communication on food resources. Thus, the association between scent and reward that nectar foragers establish while they collect on a given flower species should be retrieved during trophallaxis, i.e., the transfer of liquid food by mouth, and, accordingly, foraging experience could affect the occurrence of these interactions inside the nest. We used experimental arenas to analyze how crop scents carried by donor bees affect trophallaxis among foragers, i.e., donors and receivers, which differ in their foraging experience. Results showed that whenever the foragers had collected unscented sugar solution from a feeder the presence of scents in the solution carried by donors did not affect the occurrence of trophallaxis nor its dynamics. In contrast, whenever the foragers had previous olfactory information, new scents present in the crop of the donors negatively affected the occurrence, but not the dynamics of trophallaxis. Thus, the association learned at the food source seems to be retrieved during trophallaxis, and it is possible that known scents present in the mouthparts of nest-mates may operate as a triggering stimulus to elicit trophallactic behavior within the hive.  相似文献   

14.
Colony reproduction in honey bees involves complex interactions between sterile workers and reproductive castes. Although worker–queen interactions have been studied in detail, worker–drone interactions are less well understood. We investigated caste interactions in honey bees by determining the age and behavior of workers that perform vibration signals, trophallaxis, and grooming with drones. Workers of all ages could engage in the different interactions monitored, although workers that performed vibration signals on drones were significantly older than those engaging in trophallaxis and grooming. Only 3–8% of workers engaged in the different behaviors were monitored. Compared with workers that performed vibration signals only on workers (‘worker vibrators’), those that performed signals on both workers and drones (‘drone vibrators’) had greater movement rates inside the nest, higher vibration signaling rates, and were more likely to have an immediate association with foraging. Both worker vibrators and drone vibrators contacted drones of all ages as they moved through the nest. However, drone vibrators contacted drones at higher rates, contacted slightly, but significantly younger drones, and were more likely to engage in trophallaxis and grooming with drones, in addition to vibrating them. Taken together, our results suggest that tiny proportions of workers belonging to separate, but overlapping age groups provide most of the care received by adult drones, and that drone vibrators comprise a subset of signalers within a colony that have an increased tendency to contact and interact with drones. Vibratory, tactile signals are involved in colony reproductive and movement decisions in a number of species of bees, wasps and ants, and may provide valuable tools for investigating caste interactions in many insect societies.  相似文献   

15.
Precursors of neuroactive substances can be obtained from dietary sources, which can affect the resulting production of such substances in the brain. In social species, an intake of the precursor in food could be controlled by social interactions. To test the effects of dietary tyrosine on the brain dopamine levels in social insect colonies, male and worker honeybees were fed tyrosine or royal jelly under experimental conditions and the brain levels of dopamine and its metabolite were then measured. The results showed that the levels of dopamine and its metabolite in the brains of 4- and 8-day-old workers and 8-day-old males were significantly higher in tyrosine-fed bees than in control bees, but the levels in 4-day-old males were not. The brain levels of dopamine and its metabolite in 4- and 8-day-old males and workers were significantly higher in royal jelly-fed bees than in control bees, except for one group of 4-day-old workers. Food exchanges with workers were observed in males during 1–3 days, but self-feedings were also during 5–7 days. These results suggest that the brain levels of dopamine in males can be controlled by an intake of tyrosine in food via exchanging food with nestmates and by self-feeding.  相似文献   

16.
Abstract. 1. The western honeybee, Apis mellifera, has been introduced to many parts of the world and is sometimes purported to be detrimental to native bees because it reduces their food base. It is seldom viewed in this light in Europe; however, when beekeepers maintain very high bee densities, the species could also be displacing insects in its native European range by reducing the resource base. 2. In England, populations of bumblebees (Bombus Latr. Hym.) have been decreasing both in terms of diversity and abundance, mainly because of a loss of habitat resulting from agricultural intensification. The impact of competition from other flower feeders is largely unknown. 3. Nineteen dry lowland heaths in southern England were sampled once for honeybees and bumblebees. Honeybee abundance varied from 4 to 81 bees per 100 m2 (mean = 30.89, median = 23), whereas bumblebees varied from 2 to 17 individuals per 100 m2 (mean = 8.26, median = 7), belonging to between one and five species. There was a negative association between honeybee and bumblebee abundance but there was no apparent relationship between honeybee abundance and bumblebee diversity. 4. The Bray–Curtis coefficient was used to compare the similarity in honeybee and bumblebee floral host breadth at these 19 sites. The coefficient was negatively associated with honeybee abundance: thus where honeybees were most abundant, bumblebees were fewer and/or foraged on different flower species. 5. Foraging host breadth was also examined at four heathlands over a field season (April to September). No association between honeybee abundance and foraging host breadth was found for short‐tongued bees, although there was some evidence for a change in floral host breadth for long‐tongued bees. 6. It is concluded that the impact of honeybees on bumblebees is complex. Although competition between the two species cannot be ruled out, it is perhaps equally likely that bumblebees decline in response to other factors, and that honeybees move independently of this decline.  相似文献   

17.
In honeybees (Apis mellifera), the process of nectar collection is considered a straightforward example of task partitioning with two subtasks or two intersecting cycles of activity: (1) foraging and (2) storing of nectar, linked via its transfer between foragers and food processors. Many observations suggest, however, that nectar collection and processing in honeybees is a complex process, involving workers of other sub-castes and depending on variables such as resource profitability or the amount of stored honey. It has been observed that food processor bees often distribute food to other hive bees after receiving it from incoming foragers, instead of storing it immediately in honey cells. While there is little information about the sub-caste affiliation and the behaviour of these second-order receivers, this stage may be important for the rapid distribution of nutrients and related information. To investigate the identity of these second-order receivers, we quantified behaviours following nectar transfer and compared these behaviours with the behaviour of average worker hive-bees. Furthermore, we tested whether food quality (sugar concentration) affects the behaviour of the second-order receivers. Of all identified second-order receivers, 59.3% performed nurse duties, 18.5% performed food-processor duties and 22.2% performed forager duties. After food intake, these bees were more active, had more trophallaxes (especially offering contacts) compared to average workers and they were found mainly in the brood area, independent of food quality. Our results show that the liquid food can be distributed rapidly among many bees of the three main worker sub-castes, without being stored in honey cells first. Furthermore, the results suggest that the rapid distribution of food partly depends on the high activity of second-order receivers. Received 31 August 2006; revised 8 December 2006; accepted 11 December 2006.  相似文献   

18.
19.
Newly emerged worker honeybees (focal bees) were caged individually for 8 days either isolated or together with one companion bee of known age (2–30 days) taken from a colony. The companion bee was replaced every 2nd day. After 8 days, various parameters were investigated in the focal bees as indicators of the level of development. Focal bees which had been caged with 6-day-old companion bees were better developed than isolated focal bees, newly emerged bees, or focal bees caged with almost all other ages of companion bees. They had hypopharyngeal glands that were larger and contained more protein, their thoraces had a higher protein content, and they had a higher rate of proteolytic activity in the midgut. Although the focal bees were supplied with pollen as well as honey, they consumed only small amounts of pollen. We attribute their better development to their having been fed worker jelly by the accompanying companion bees. The 6-day-old companion bees consumed high quantities of pollen and spent more time (18.7 ± 11.85 s/h) feeding focal bees than 12-day-old bees (6.5 ± 4.09 s/h) or foragers (no feeding of focal bees). The results show that even under such artificial conditions, the exchange of food (trophallaxis) promotes the development of young honeybee workers. Accepted: 26 February 1999  相似文献   

20.
By means of infrared thermography and without disturbing social interactions, the correlation between thoracic temperature in honeybees, Apis mellifera carnica, upon their return to the hive and their foraging distance was investigated. Thoracic temperature while dancing and walking and during trophallactic contact with hive bees decreased with increasing flight distance. In bees foraging 0.5, 1, 1.5 and 2 molar sucrose solutions from a distance of 120 m, dancing temperature amounted to 38.4, 40.1, 40.9 and 40.6 °C, respectively; while in bees foraging from a distance of 2950 m it amounted to 36.6, 38.4, 38.6 and 39.1 °C, respectively. The rate of decrease in dancing temperature per 1000 m increase in flight distance was 0.64, 0.47, 0.81 and 0.54 °C with a 0.5, 1, 1.5 and 2 molar sucrose solution, respectively. Both at short and at long flight distances, the relationship between thoracic temperature and sucrose concentration of the food followed a non-linear curve, which flattened at concentrations higher than 1 mol/1. The experiments showed that inside the hive the foragers' level of thermoregulation depends not only on the energy (sugar) content of the food; but rather, the level of thermoregulation corresponds to the general quality of the food source, which includes both energy content and distance from the hive. Because the thermal behaviour of foragers correlates with several behavioural parameters indicating the bees' foraging tendency and their eagerness to dance, thoracic temperature seems to be a correlate of the profitability of foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号