首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Typically, approach behaviour is displayed in the context of moving towards a desired goal, while avoidance behaviour is displayed in the context of moving away from threatening or novel stimuli. In the current research, we detected three sub-populations of C57BL/6J mice that spontaneously responded with avoiding, balancing or approaching behaviours in the presence of the same conflicting stimuli. While the balancing animals reacted with balanced responses between approach and avoidance, the avoiding or approaching animals exhibited inhibitory or advance responses towards one of the conflicting inputs, respectively. Individual differences in approach and avoidance motivation might be modulated by the normal variance in the level of functioning of different systems, such as endocannabinoid system (ECS). The present research was aimed at analysing the ECS involvement on approach and avoidance behavioural processes. To this aim, in the three selected sub-populations of mice that exhibited avoiding or balancing or approaching responses in an approach/avoidance Y-maze we analysed density and functionality of CB(1) receptors as well as enzyme fatty acid amide hydrolase activity in different brain regions, including the networks functionally responsible for emotional and motivational control. The main finding of the present study demonstrates that in both approaching and avoiding animals higher CB(1) receptor density in the amygdaloidal centro-medial nuclei and in the hypothalamic ventro-medial nucleus was found when compared with the CB(1) receptor density exhibited by the balancing animals. The characterization of the individual differences to respond in a motivationally based manner is relevant to clarify how the individual differences in ECS activity are associated with differences in motivational and affective functioning.  相似文献   

2.
The endocannabinoid system (ECS) plays a fundamental role in the regulation of synaptic transmission. Exposure to stressful events triggers synaptic adaptations in many brain areas. The activity of the ECS in stress-responsive neural circuits suggests that it may be involved in the behavioral responses and synaptic effects typical of stress. In this review, we discuss evidence demonstrating that striatal ECS is modulated by stress. Chronic stress exposure alters endocannabinoid levels, cannabinoid CB1 receptor binding and cannabinoid CB1 receptor-mediated control of inhibitory synaptic transmission in the striatum. Recent studies have shown that impairment of endocannabinoid signalling is associated with inability to adapt to chronic stress and to the development of maladaptive behaviors. The ECS represents a novel potential pharmacological target to treat stress-associated neuropsychiatric conditions.  相似文献   

3.
Several G protein-associated receptors and synaptic proteins function within lipid rafts, which are subdomains of the plasma membranes that contain high concentrations of cholesterol. In this study we addressed the possible role of lipid rafts in the control of endocannabinoid system in striatal slices. Disruption of lipid rafts following cholesterol depletion with methyl-β-cyclodestrin (MCD) failed to affect synthesis and degradation of anandamide, while it caused a marked increase in the synthesis and concentration of 2-arachidonoylglycerol (2-AG), as well as in the binding activity of cannabinoid CB1 receptors. Surprisingly, endogenous 2-AG-mediated control of GABA transmission was not potentiated by MCD treatment and, in contrast, neither basal nor 3,5-Dihydroxyphenylglycine-stimulated 2-AG altered GABA synapses in cholesterol-depleted slices. Synaptic response to the cannabinoid CB1 receptor agonist HU210 was however intact in MCD-treated slices, indicating that reduced sensitivity of cannabinoid CB1 receptors does not explain why endogenous 2-AG is ineffective in inhibiting striatal GABA transmission after cholesterol depletion. Confocal microscopy analysis suggested that disruption of raft integrity by MCD might uncouple metabotropic glutamate 5-CB1 receptor interaction by altering the correct localization of both receptors in striatal neuron elements. In conclusion, our data indicate that disruption of raft integrity causes a complex alteration of the endocannabinoid signalling in the striatum.  相似文献   

4.
The endogenous cannabinoid system and its role in nociceptive behavior   总被引:6,自引:0,他引:6  
The analgesic properties of exogenous cannabinoids have been recognized for many years and suggest a regulatory role for the endogenous cannabinoid ("endocannabinoid") system in mammalian nociceptive pathways. The endocannabinoid system includes: (1) at least two families of lipid signaling molecules, the N-acyl ethanolamines (e.g., anandamide) and the monoacylglycerols (e.g., 2-arachidonoyl glycerol); (2) multiple enzymes involved in the biosynthesis and degradation of these lipids, including the integral membrane enzyme fatty acid amide hydrolase; and (3) two G-protein coupled receptors, CB1 and CB2, which are primarily localized to the nervous system and immune system, respectively. Here, we review recent genetic, behavioral, and pharmacological studies that have tested the function of the endocannabinoid system in pain sensation. Collectively, these investigations support a role for endocannabinoids in modulating behavioral responses to acute, inflammatory, and neuropathic pain stimuli.  相似文献   

5.
Activation of the sympathetic nervous system is fundamental to the coordinated response to stress or danger. The midbrain periaqueductal gray (PAG) contains the neural substrate required to recruit the sympathetic nervous system and organize the physiological and behavioral responses required to respond to imposed challenges. Endocannabinoids have been shown to influence associated behavioral responses. The defense response was used in this study as a working model to examine endocannabinoid modulation of the sympathetic response to acute stress in the anesthetized rat. Microinjection of the cannabinoid 1 (CB1) receptor agonist anandamide into the defense pathway of the dorsal PAG could elicit an increase in renal sympathetic nerve activity and blood pressure, twitching of the whiskers, and movement of the limbs. The response was attenuated by prior microinjection of the CB1 receptor antagonist AM-281 at the same site. Electrical stimulation of the hypothalamic defense area could evoke similar sympathoexcitatory and pressor responses, which were significantly attenuated by microinjection of AM-281 into the dorsal PAG. These data indicate that endocannabinoids can modulate the sympathetic and cardiovascular components of the acute stress response via CB1 receptors at the level of the PAG.  相似文献   

6.
Nicotine, the main psychoactive ingredient in tobacco, plays a key role in the development of cigarette smoking addiction. The endocannabinoid system has been demonstrated to have an important role in the motivational and reinforcing effects of drugs. The present study used behavioral and neurochemical techniques to study the interaction of cannabinoid receptors and nicotine pharmacology. In a locomotor activity experiment in rats, the CB(1)/CB(2) cannabinoid receptor agonist WIN-55,212-2 (0.28-2.8 mg/kg) attenuated nicotine (0.4 mg/kg)-induced hyperactivity, but did not alter nicotine (1.0 mg/kg)-induced hypoactivity. In contrast, the selective CB(1) cannabinoid receptor antagonist SR-141716A (1.0 mg/kg) diminished nicotine-induced hypoactivity, but did not alter nicotine-induced hyperactivity. In a neurochemical experiment, rat striatal slices preloaded with [(3)H]dopamine were superfused with WIN-55,212-2 or SR-141716A. A high concentration (100 microM) of WIN-55,212-2 evoked [(3)H]overflow, but this effect was not blocked by the cannabinoid receptor antagonist AM-251. SR-141716A did not evoke [(3)H]overflow, and neither WIN-55,212-2 nor SR-141716A altered nicotine-evoked [(3)H]overflow. Overall, these results indicate a behavioral interaction between cannabinoid receptors and nicotine pharmacology. Likely, WIN-55,212-2 and SR-141716A block nicotine-induced changes in behavior through an indirect mechanism, such as alteration in endocannabinoid regulation of motor circuits, rather than directly through blockade of nicotinic acetylcholine receptors.  相似文献   

7.
The endocannabinoid system is an important regulator of the hormonal and behavioral stress responses, which critically involve corticotropin-releasing factor (CRF) and its receptors. While it has been shown that CRF and the cannabinoid type 1 (CB1) receptor are co-localized in several brain regions, the physiological relevance of this co-expression remains unclear. Using double in situ hybridization, we confirmed co-localization in the piriform cortex, the lateral hypothalamic area, the paraventricular nucleus, and the Barrington's nucleus, albeit at low levels. To study the behavioral and physiological implications of this co-expression, we generated a conditional knockout mouse line that selectively lacks the expression of CB1 receptors in CRF neurons. We found no effects on fear and anxiety-related behaviors under basal conditions nor after a traumatic experience. Additionally, plasma corticosterone levels were unaffected at baseline and after restraint stress. Only acoustic startle responses were significantly enhanced in male, but not female, knockout mice. Taken together, the consequences of depleting CB1 in CRF-positive neurons caused a confined hyperarousal phenotype in a sex-dependent manner. The current results suggest that the important interplay between the central endocannabinoid and CRF systems in regulating the organism's stress response is predominantly taking place at the level of CRF receptor-expressing neurons.  相似文献   

8.
We have recently reported that the administration of AM404, an inhibitor of the endocannabinoid re-uptake process, which also has affinity for the vanilloid VR1 receptors, is able to reduce hyperkinesia, and causes recovery from neurochemical deficits, in a rat model of Huntington's disease (HD) generated by bilateral intrastriatal injections of 3-nitropropionic acid (3NP). In the present study, we wanted to explore the mechanism(s) by which AM404 produces its antihyperkinetic effect in 3NP-lesioned rats by employing several experimental approaches. First, we tried to block the effects of AM404 with selective antagonists for the CB1 or VR1 receptors, i.e. SR141716A and capsazepine, respectively. We found that the reduction caused by AM404 of the increased ambulation exhibited by 3NP-lesioned rats in the open-field test was reversed when the animals had been pre-treated with capsazepine but not with SR141716A, thus suggesting a major role of VR1 receptors in the antihyperkinetic effects of AM404. However, despite the lack of behavioral effects of the CB1 receptor antagonist, the pretreatment with this compound abolished the recovery of neurochemical [gamma-aminobutyric acid (GABA) and dopamine] deficits in the caudate- putamen caused by AM404, as also did capsazepine. In a second group of studies, we wanted to explore the potential antihyperkinetic effects of various compounds which, compared to AM404, exhibit more selectivity for either the endovanilloid or the endocannabinoid systems. First, we tested VDM11 or AM374, two selective inhibitors or the endocannabinoid re-uptake or hydrolysis, respectively. Both compounds were mostly unable to reduce hyperkinesia in 3NP-lesioned rats, although VDM11 produced a certain motor depression, and AM374 exhibited a trend to stimulate ambulation, in control rats. We also tested the effects of selective direct agonists for VR1 (capsaicin) or CB1 (CP55,940) receptors. Capsaicin exhibited a strong antihyperkinetic activity and, moreover, was able to attenuate the reductions in dopamine and GABA transmission provoked by the 3NP lesion, whereas CP55,940 had also antihyperkinetic activity but was unable to cause recovery of either dopamine or GABA deficits in the basal ganglia. In summary, our data indicate a major role for VR1 receptors, as compared to CB1 receptors, in the antihyperkinetic effects and the recovery of neurochemical deficits caused in 3NP-lesioned rats by compounds that activate both CB1 and VR1 receptors, either directly or via manipulation of the levels of endogenous agonists.  相似文献   

9.
当物体迫近观察者或观察者迫近物体时,观察者(人或动物)利用何种视觉线索成功地实现躲避行为或截取行为?已有研究显示物体在观察者视网膜上视像均匀扩大的速率(Tau线索)可直接为人或动物提供即将碰撞时间信息,从而使得观察者可以直接指挥肢体,做出反应。本综述从行为学和认知神经基础上总结了支持Tau线索的证据,并对今后关于即将碰撞时间估计视觉线索研究趋势提出建议。  相似文献   

10.
陶维东  陶晓丽  孙弘进 《生物磁学》2011,(6):1165-1169,1183
当物体迫近观察者或观察者迫近物体时,观察者(人或动物)利用何种视觉线索成功地实现躲避行为或截取行为?已有研究显示物体在观察者视网膜上视像均匀扩大的速率(Tau线索)可直接为人或动物提供即将碰撞时间信息,从而使得观察者可以直接指挥肢体,做出反应。本综述从行为学和认知神经基础上总结了支持Tau线索的证据,并对今后关于即将碰撞时间估计视觉线索研究趋势提出建议。  相似文献   

11.
The endocannabinoid system plays a central role in retrograde synaptic communication and may control the spread of activity in an epileptic network. Using the pilocarpine model of temporal lobe epilepsy we examined the expression pattern of the Type 1 cannabinoid receptor (CB1-R) in the hippocampi of CD1 mice at survival times of 2 hours, 1 day, 3 days and 2 months (acute, latent and chronic phases). Based on the behavioral signs of the acute seizures, animals were classified as "weakly" or "strongly" epileptic using the modified Racine scale. Mice of the weak group had mild seizures, whereas seizures in the strong group were frequent with intense motor symptoms and the majority of these animals developed sclerosis in the chronic phase. In control samples the most intense staining of CB1-R-positive fibers was found in the molecular layer of the dentate gyrus and in str. pyramidale of the cornu Ammonis. In weak animals no significant changes were seen at any survival time compared to controls. In strong animals, however, in the acute phase, a massive reduction in CB1-R-stained terminals occurred in the hippocampus. In the latent phase CB1-R immunoreactivity gradually recovered. In the chronic phase, CB1-immunostaining in sclerotic samples was stronger throughout the hippocampus. Quantitative electron microscopic analysis showed an increase in the number of CB1-R-positive terminals in the dentate gyrus. Moreover, the number of immunogold particles significantly increased in GABAergic terminals. Our results suggest a proconvulsive downregulation of CB1 receptors in the acute phase most probably due to receptor internalization, followed by compensatory upregulation and sprouting in the chronic phase of epilepsy. In conclusion, the changes in CB1 receptor expression pattern revealed in this study are associated with the severity of hippocampal injury initiated by acute seizures that ultimately leads to sclerosis in the vulnerable regions in the chronic phase.  相似文献   

12.
The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC). Recent behavioral data suggest that the endocannabinoid system also plays a role in this respect. Here we investigated the role of cannabinoid CB1 receptor activity in amphetamine-induced monoamine release in the NAC and/or mPFC of rats using in vivo microdialysis. Results show that systemic administration of a low, clinically relevant dose of amphetamine (0.5mg/kg) robustly increased dopamine and norepinephrine release (to ~175-350% of baseline values) in the NAC shell and core subregions as well as the ventral and dorsal parts of the mPFC, while moderately enhancing extracellular serotonin levels (to ~135% of baseline value) in the NAC core only. Although systemic administration of the CB1 receptor antagonist SR141716A (0-3mg/kg) alone did not affect monoamine release, it dose-dependently abolished amphetamine-induced dopamine release specifically in the NAC shell. SR141716A did not affect amphetamine-induced norepinephrine or serotonin release in any of the brain regions investigated. Thus, the effects of acute CB1 receptor blockade on amphetamine-induced monoamine transmission were restricted to dopamine, and more specifically to mesolimbic dopamine projections into the NAC shell. This brain region- and monoamine-selective role of CB1 receptors is suggested to subserve the behavioral effects of amphetamine.  相似文献   

13.
The myocardial endocannabinoid system has been linked to stress response and cardioprotection. In chronic heart failure (CHF), protective CB2 receptors are markedly up-regulated while CB1 receptors are slightly down-regulated. We here provide evidence that myocardial CB receptors are subject to microRNA regulation. By a combined computational and experimental approach we show that CB1 receptors are regulated by miR-494, and CB2 receptors are targeted by miR-665. Moreover, we demonstrate that in CHF, miR-665 expression is significantly decreased while miR-494 is slightly increased, which is concordant with the previously reported alterations of CB receptors. These results suggest that in CHF, altered expression of specific miRNAs may contribute to a compensatory response of the diseased myocardium.  相似文献   

14.
The endocannabinoid (eCB) system regulates emotion, stress, memory and cognition through the cannabinoid type 1 (CB1) receptor. To test the role of CB1 signaling in social anxiety and memory, we utilized a genetic knockout (KO) and a pharmacological approach. Specifically, we assessed the effects of a constitutive KO of CB1 receptors (CB1KOs) and systemic administration of a CB1 antagonist (AM251; 5 mg/kg) on social anxiety in a social investigation paradigm and social memory in a social discrimination test. Results showed that when compared with wild‐type (WT) and vehicle‐treated animals, CB1KOs and WT animals that received an acute dose of AM251 displayed anxiety‐like behaviors toward a novel male conspecific. When compared with WT animals, KOs showed both active and passive defensive coping behaviors, i.e. elevated avoidance, freezing and risk‐assessment behaviors, all consistent with an anxiety‐like profile. Animals that received acute doses of AM251 also showed an anxiety‐like profile when compared with vehicle‐treated animals, yet did not show an active coping strategy, i.e. changes in risk‐assessment behaviors. In the social discrimination test, CB1KOs and animals that received the CB1 antagonist showed enhanced levels of social memory relative to their respective controls. These results clearly implicate CB1 receptors in the regulation of social anxiety, memory and arousal. The elevated arousal/anxiety resulting from either total CB1 deletion or an acute CB1 blockade may promote enhanced social discrimination/memory. These findings may emphasize the role of the eCB system in anxiety and memory to affect social behavior .  相似文献   

15.
Endogenous cannabinoids (endocannabinoids) and their cannabinoid CB1 and CB2 receptors, are present from the early stages of gestation and play a number of vital roles for the developing organism. Although most of these data are collected from animal studies, a role for cannabinoid receptors in the developing human brain has been suggested, based on the detection of "atypically" distributed CB1 receptors in several neural pathways of the fetal brain. In addition, a role for the endocannabinoid system for the human infant is likely, since the endocannabinoid 2-arachidonoyl glycerol has been detected in human milk. Animal research indicates that the Endocannabinoid-CB1 Receptor ('ECBR') system fulfills a number of roles in the developing organism: 1. embryonal implantation (requires a temporary and localized reduction in anandamide); 2. in neural development (by the transient presence of CB1 receptors in white matter areas of the nervous system); 3. as a neuroprotectant (anandamide protects the developing brain from trauma-induced neuronal loss); 4. in the initiation of suckling in the newborn (where activation of the CB1 receptors in the neonatal brain is critical for survival). 5. In addition, subtle but definite deficiencies have been described in memory, motor and addictive behaviors and in higher cognitive ('executive') function in the human offspring as result of prenatal exposure to marihuana. Therefore, the endocanabinoid-CB1 receptor system may play a role in the development of structures which control these functions, including the nigrostriatal pathway and the prefrontal cortex. From the multitude of roles of the endocannabinoids and their receptors in the developing organism, there are two distinct stages of development, during which proper functioning of the endocannabinoid system seems to be critical for survival: embryonal implantation and neonatal milk sucking. We propose that a dysfunctional Endocannabinoid-CB1 Receptor system in infants with growth failure resulting from an inability to ingest food, may resolve the enigma of "non-organic failure-to-thrive" (NOFTT). Developmental observations suggest further that CB1 receptors develop only gradually during the postnatal period, which correlates with an insensitivity to the psychoactive effects of cannabinoid treatment in the young organism. Therefore, it is suggested that children may respond positively to medicinal applications of cannabinoids without undesirable central effects. Excellent clinical results have previously been reported in pediatric oncology and in case studies of children with severe neurological disease or brain trauma. We suggest cannabinoid treatment for children or young adults with cystic fibrosis in order to achieve an improvement of their health condition including improved food intake and reduced inflammatory exacerbations.  相似文献   

16.
The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine.  相似文献   

17.
The major psychoactive component of cannabis derivatives, delta9-THC, activates two G-protein coupled receptors: CB1 and CB2. Soon after the discovery of these receptors, their endogenous ligands were identified: lipid metabolites of arachidonic acid, named endocannabinoids. The two major main and most studied endocannabinoids are anandamide and 2-arachidonyl-glycerol. The CB1 receptor is massively expressed through-out the central nervous system whereas CB2 expression seems restricted to immune cells. Following endocannabinoid binding, CB1 receptors modulate second messenger cascades (inhibition of adenylate cyclase, activation of mitogen-activated protein kinases and of focal-adhesion kinases) as well as ionic conductances (inhibition of voltage-dependent calcium channels, activation of several potassium channels). Endocannabinoids transiently silence synapses by decreasing neurotransmitter release, play major parts in various forms of synaptic plasticity because of their ability to behave as retrograde messengers and activate non-cannabinoid receptors (such as vanilloid receptor type-1), illustrating the complexity of the endocannabinoid system. The diverse cellular targets of endocannabinoids are at the origin of the promising therapeutic potentials of the endocannabinoid system.  相似文献   

18.
In this paper, the modeling of several complex chemotaxis behaviors of C. elegans is explored, which include food attraction, toxin avoidance, and locomotion speed regulation. We first model the chemotaxis behaviors of food attraction and toxin avoidance separately. Then, an integrated chemotaxis behavioral model is proposed, which performs the two chemotaxis behaviors simultaneously. The novelty and the uniqueness of the proposed chemotaxis behavioral models are characterized by several attributes. First, all the chemotaxis behavioral model sare on biological basis, namely, the proposed chemotaxis behavior models are constructed by extracting the neural wire diagram from sensory neurons to motor neurons, where sensory neurons are specific for chemotaxis behaviors. Second, the chemotaxis behavioral models are able to perform turning and speed regulation. Third, chemotaxis behaviors are characterized by a set of switching logic functions that decide the orientation and speed. All models are implemented using dynamic neural networks (DNN) and trained using the real time recurrent learning (RTRL) algorithm. By incorporating a speed regulation mechanism, C. elegans can stop spontaneously when approaching food source or leaving away from toxin. The testing results and the comparison with experiment results verify that the proposed chemotaxis behavioral models can well mimic the chemotaxis behaviors of C. elegans in different environments.  相似文献   

19.
Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions.  相似文献   

20.
Balanced control of neuronal activity is central in maintaining function and viability of neuronal circuits. The endocannabinoid system tightly controls neuronal excitability. Here, we show that endocannabinoids directly target hippocampal glutamatergic neurons to provide protection against acute epileptiform seizures in mice. Functional CB1 cannabinoid receptors are present on glutamatergic terminals of the hippocampal formation, colocalizing with vesicular glutamate transporter 1 (VGluT1). Conditional deletion of the CB1 gene either in cortical glutamatergic neurons or in forebrain GABAergic neurons, as well as virally induced deletion of the CB1 gene in the hippocampus, demonstrate that the presence of CB1 receptors in glutamatergic hippocampal neurons is both necessary and sufficient to provide substantial endogenous protection against kainic acid (KA)-induced seizures. The direct endocannabinoid-mediated control of hippocampal glutamatergic neurotransmission may constitute a promising therapeutic target for the treatment of disorders associated with excessive excitatory neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号