首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Blocks of tissue were removed from various locations in the bovine digestive tract and fixed and processed for transmission and scanning electron microscopy by techniques that retained adherent bacteria. The distribution of bacteria on the surface of epithelial cells was examined by scanning electron microscopy. This showed intermittent colonization of the epithelia with the formation of occasional microcolonies of morphologically similar bacterial cells. Transmission electron microscopy of ruthenium red-stained material showed the presence of both the glycocalyx of the bovine epithelial cells and fibrous carbohydrate coats surrounding adherent bacteria. The carbohydrate coats appeared to mediate the attachment of bacteria to the epithelium, to food particles, and to each other so that microcolonies were formed. Careful examination of the bacterial colonization of keratinized cells in the process of being sloughed from the surface of the stratified squamous epithelium of the rumen showed that these dead cells were digested by adherent bacteria of a limited number of morphological types. The spatial relationship of this mixed, adherent, microbial population to living and dead epithelial cells and to food particles indicates that digestive processes of some importance may be accomplished by this stationary component of the microbial flora of the digestive tract.  相似文献   

2.
Blocks of tissue were removed from various locations in the bovine digestive tract and fixed and processed for transmission and scanning electron microscopy by techniques that retained adherent bacteria. The distribution of bacteria on the surface of epithelial cells was examined by scanning electron microscopy. This showed intermittent colonization of the epithelia with the formation of occasional microcolonies of morphologically similar bacterial cells. Transmission electron microscopy of ruthenium red-stained material showed the presence of both the glycocalyx of the bovine epithelial cells and fibrous carbohydrate coats surrounding adherent bacteria. The carbohydrate coats appeared to mediate the attachment of bacteria to the epithelium, to food particles, and to each other so that microcolonies were formed. Careful examination of the bacterial colonization of keratinized cells in the process of being sloughed from the surface of the stratified squamous epithelium of the rumen showed that these dead cells were digested by adherent bacteria of a limited number of morphological types. The spatial relationship of this mixed, adherent, microbial population to living and dead epithelial cells and to food particles indicates that digestive processes of some importance may be accomplished by this stationary component of the microbial flora of the digestive tract.  相似文献   

3.
Airway epithelia express sialylated receptors that recognize exogenous danger signals. Regulation of receptor responsiveness to these signals remains incompletely defined. Here, we explore the mechanisms through which the human sialidase, neuraminidase-1 (NEU1), promotes the interaction between the sialoprotein, mucin 1 (MUC1), and the opportunistic pathogen, Pseudomonas aeruginosa. P. aeruginosa flagellin engaged the MUC1 ectodomain (ED), increasing NEU1 association with MUC1. The flagellin stimulus increased the association of MUC1-ED with both NEU1 and its chaperone/transport protein, protective protein/cathepsin A. Scatchard analysis demonstrated NEU1-dependent increased binding affinity of flagellin to MUC1-expressing epithelia. NEU1-driven MUC1-ED desialylation rapidly increased P. aeruginosa adhesion to and invasion of the airway epithelium. MUC1-ED desialylation also increased its shedding, and the shed MUC1-ED competitively blocked P. aeruginosa adhesion to cell-associated MUC1-ED. Levels of desialylated MUC1-ED were elevated in the bronchoalveolar lavage fluid of mechanically ventilated patients with P. aeruginosa airway colonization. Preincubation of P. aeruginosa with these same ex vivo fluids competitively inhibited bacterial adhesion to airway epithelia, and MUC1-ED immunodepletion completely abrogated their inhibitory activity. These data indicate that a prokaryote, P. aeruginosa, in a ligand-specific manner, mobilizes eukaryotic NEU1 to enhance bacterial pathogenicity, but the host retaliates by releasing MUC1-ED into the airway lumen as a hyperadhesive decoy receptor.  相似文献   

4.
Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. K. pneumoniae infections can occur at nearly any body site; however, urinary tract infections and infections of the respiratory tract predominate. Infections are frequently preceded by gastrointestinal colonization, and the gastrointestinal tract is believed to be the most important reservoir for transmission of the bacteria. In contrast to many other bacterial pathogens, K. pneumoniae is ubiquitous in nature. Several studies have described Klebsiella isolates of environmental origin to be nearly identical to clinical isolates with respect to several phenotypic properties. However, the pathogenic potential of environmental K. pneumoniae isolates is essentially unknown. We have evaluated the virulence of K. pneumoniae strains of environmental and clinical origin directly in animal models, i.e. in urinary tract infection and intestinal colonization models. Furthermore, the ability to adhere to and invade human epithelial cell lines was examined. Although strain-to-strain differences were observed in the individual infection models, overall, strains of environmental origin were found to be as virulent as strains of clinical origin. The ubiquity of K. pneumoniae in nature and the general ability of K. pneumoniae strains to infect susceptible hosts might explain the high frequency of opportunistic infections caused by this species.  相似文献   

5.
The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP(3) receptor-mediated Ca(2+) influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-β-cyclodextrin (MβC) significantly increases the association between MAMs and mitochondria, whereas MβC saturated with cholesterol does not change the association. (14)C-Serine pulse-labeling demonstrated that the treatment of living cells with MβC decreases the level of de novo synthesized (14)C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of (14)C-phosphatidylethanolamine (PtEt). Apparently, cholesterol depletion increased the PtSer transport from MAMs to mitochondria. Our findings suggest that cholesterol is an important substrate in regulating the association between MAMs of the ER and mitochondria.  相似文献   

6.
《Free radical research》2013,47(12):1449-1458
Purpose. Aspiration pneumonia is infection of the respiratory tract resulting from accumulation of sputum in the larynx. N-acetyl-L-cysteine (NAC) might regulate mucin (MUC) expression and activate inherent anti-infective system in bronchiolar epithelial cells after cellular uptake, and therefore, serve as the preventative agent for chronic lung disease including aspiration pneumonia. The purpose of this in vitro study was to evaluate the effect of uptake of NAC by human bronchiolar epithelial cells on bacterial infection and regulations of mucin expression in association with cellular redox status under co-culture with a representative pathogen for hospital- and community-acquired pneumonia, Streptococcus pneumoniae. Materials and methods. Human bronchiolar epithelial cells preincubated with or without 20 mM NAC for 3 h were co-cultured with or without bacteria for 8 h and evaluated with respect to cellular redox balance, expressions of various types of MUC, proinflammatory cytokines and mediators, and bacterial infection state by biochemical, genetic, and immunofluorescent assays. Results. Markedly increased intracellular reactive oxygen species and oxidized glutathione levels plus increased release and expression of proinflammatory cytokines and mediators were observed in cells co-cultured with bacteria. These bacteria-induced cellular redox disturbance and proinflammatory events were prevented and alleviated by pretreatment with NAC. Cells co-cultured with bacteria did not increase expression of anti-infective membranous MUC4 but exhibited increases in gel-forming MUC5AC expression and bacterial infection. However, NAC-pretreated cells avoided bacterial infection along with enhancement of MUC4, but not MUC5AC, expression. Conclusion. Uptake of NAC by human bronchiolar epithelial cells prevented bacterial infection and upregulated membranous, but not gel-forming, MUC expression along with the increase in intracellular antioxidant level under co-culture conditions with S. pneumoniae.  相似文献   

7.
Streptococcus pneumoniae and Haemophilus influenzae are human pathogens that often asymptomatically colonize the mucosal surface of the upper respiratory tract, but also occasionally cause invasive disease. The ability of these species to traverse the epithelium of the airway mucosa was modeled in vitro using polarized respiratory epithelial cells in culture. Migration across the epithelial barrier was preceded by loss of transepithelial resistance. Membrane products of S. pneumoniae that included lipoteichoic acid induced disruption of the epithelial barrier in a Toll-like receptor 2-dependent manner. This result correlates with a recent genetic study that associates increased TLR2 signaling with increased rates of invasive pneumococcal disease in humans. Loss of transepithelial resistance by the TLR2 ligand correlated with activation of p38 MAP kinase and transforming growth factor (TGF)-beta signaling. Activation of p38 MAPK and TGF-beta signaling in epithelial cells upon nasal infection with S. pneumoniae was also demonstrated in vivo. Inhibition of either p38 MAPK or TGF-beta signaling was sufficient to inhibit the migration of S. pneumoniae or H. influenzae. Our data shows that diverse bacteria utilize common mechanisms, including MAPK and TGF-beta signaling pathways to disrupt epithelial barriers and promote invasion.  相似文献   

8.
MUC1, a type I transmembrane glycoprotein expressed on most epithelia and many cancer cells, is involved in embryo implantation and tumor progression. A series of antibodies directed against the MUC1 ectodomain have been used to study MUC1 expression in the female reproductive tract, sometimes with apparently contradictory results. In the current study, we used two monoclonal MUC1 antibodies, 214D4 and HMFG1, to study the relationship between these MUC1 glycoforms in the human uterine epithelial cell line, HES, and human endometrial extracts. In response to tumor necrosis factor stimulation, accumulation of the HMFG1-reactive forms preceded that of the 214D4-reactive forms. Following inhibition of protein synthesis by cycloheximide, HMFG1-reactive species were lost rapidly (metabolic half-life [T(1/2)] = 20 min), while there was no change in the level of the 214D4-reactive forms even after 80 min. HMFG1-reactive forms had smaller oligosaccharide chains than the 214D4-reactive forms, and could not be detected on the cell surface of intact cells or in the shed (media) fraction, although they were readily detected in permeabilized cells. Both 214D4- and HMFG1-reactive species were detected in human endometrial extracts throughout the cycle; however, consistent with the HES cell studies, the HMFG1-reactive species were both smaller and less abundant than the 214D4-reactive species. Consistent with this observation, we found that HMFG1-reactive species were difficult to detect in tissue sections unless predigested with neuraminidase, indicating that these structures are rapidly sialylated during synthesis. In contrast, 214D4-reactive species were robustly detected in both proliferative and secretory stages. Collectively, these studies indicate that the HMFG1-reactive glycoform is a precursor of the 214D4-reactive glycoform in HES cells and normal uterine epithelia. Therefore, discrepancies in patterns of MUC1 expression in other studies may be due to failure to account for these glycoform relationships.  相似文献   

9.
Mitochondrial dysfunction plays a principal role in hypoxia-induced endothelial injury, which is involved in hypoxic pulmonary hypertension and ischemic cardiovascular diseases. Recent studies have identified mitochondria-associated membranes (MAMs) that modulate mitochondrial function under a variety of pathophysiological conditions such as high-fat diet-mediated insulin resistance, hypoxia reoxygenation-induced myocardial death, and hypoxia-evoked vascular smooth muscle cell proliferation. However, the role of MAMs in hypoxia-induced endothelial injury remains unclear. To explore this further, human umbilical vein endothelial cells and human pulmonary artery endothelial cells were exposed to hypoxia (1% O2) for 24 hours. An increase in MAM formation was uncovered by immunoblotting and immunofluorescence. Then, we performed small interfering RNA transfection targeted to MAM constitutive proteins and explored the biological effects. Knockdown of MAM constitutive proteins attenuated hypoxia-induced elevation of mitochondrial Ca2+ and repressed mitochondrial impairment, leading to an increase in mitochondrial membrane potential and ATP production and a decline in reactive oxygen species. Then, we found that MAM disruption mitigated cell apoptosis and promoted cell survival. Next, other protective effects, such as those pertaining to the repression of inflammatory response and the promotion of NO synthesis, were investigated. With the disruption of MAMs under hypoxia, inflammatory molecule expression was repressed, and the eNOS-NO pathway was enhanced. This study demonstrates that the disruption of MAMs might be of therapeutic value for treating endothelial injury under hypoxia, suggesting a novel strategy for preventing hypoxic pulmonary hypertension and ischemic injuries.  相似文献   

10.
The intestinal epithelial cell (IEC) layer of the intestinal tract makes direct contact with a number of microbiota communities, including bacteria known to have deleterious health effects. IECs possess innate protective strategies against pathogenic challenge, which primarily involve the formation of a physicochemical barrier. Intestinal tract mucins are principal components of the mucus layer on epithelial surfaces, and perform a protective function against microbial damage. However, little is currently known regarding the interactions between probiotics/pathogens and epithelial cell mucins. The principal objective of this study was to determine the effects of Lactobacillus on the upregulation of MUC2 mucin and the subsequent inhibition of E. coli O157:H7 attachment to epithelial cells. In the current study, the attachment of E. coli O157:H7 to HT-29 intestinal epithelial cells was inhibited significantly by L. acidophilus A4 and its cell extracts. It is also important to note that the expression of MUC2 mucin was increased as the result of the addition of L. acidophilus A4 cell extracts (10.0 mg/ml), which also induced a significant reduction in the degree to which E. coli O157:H7 attached to epithelial cells. In addition, the mRNA levels of IL-8, IL-1beta, and TNF-alpha in HT-29 cells were significantly induced by treatment with L. acidophilus A4 extracts. These results indicate that MUC2 mucin and cytokines are important regulatory factors in the immune systems of the gut, and that selected lactobacilli may be able to induce the upregulation of MUC2 mucin and specific cytokines, thereby inhibiting the attachment of E. coli O157:H7.  相似文献   

11.
12.
The MUC1 tumor associated antigen is highly expressed on a range of tumors. Its broad distribution on primary tumors and metastases renders it an attractive target for immunotherapy. After synthesis MUC1 is cleaved, yielding a large soluble extracellular alpha subunit containing the tandem repeats array (TRA) domain specifically bound, via non-covalent interaction, to a smaller beta subunit containing the transmembrane and cytoplasmic domains. Thus far, inconclusive efficacy has been reported for anti-MUC1 antibodies directed against the soluble alpha subunit. Targeting the cell bound beta subunit, may bypass limitations posed by circulating TRA domains. MUC1’s signal peptide (SP) domain promiscuously binds multiple MHC class II and Class I alleles, which upon vaccination, generated robust T-cell immunity against MUC1-positive tumors. This is a first demonstration of non-MHC associated, MUC1 specific, cell surfaces presence for MUC1 SP domain. Polyclonal and monoclonal antibodies generated against MUC1 SP domain specifically bind a large variety of MUC1-positive human solid and haematological tumor cell lines; MUC1-positive bone marrow derived plasma cells obtained from multiple myeloma (MM)-patients, but not MUC1 negative tumors cells, and normal naive primary blood and epithelial cells. Membranal MUC1 SP appears mainly as an independent entity but also co-localized with the full MUC1 molecule. MUC1-SP specific binding in BM-derived plasma cells can assist in selecting patients to be treated with anti-MUC1 SP therapeutic vaccine, ImMucin. A therapeutic potential of the anti-MUC1 SP antibodies was suggested by their ability to support of complement-mediated lysis of MUC1-positive tumor cells but not MUC1 negative tumor cells and normal naive primary epithelial cells. These findings suggest a novel cell surface presence of MUC1 SP domain, a potential therapeutic benefit for anti-MUC1 SP antibodies in MUC1-positive tumors and a selection tool for MM patients to be treated with the anti-MUC1 SP vaccine, ImMucin.  相似文献   

13.
Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli.  相似文献   

14.
MUC1 is a mucin-like transmembrane protein found on the apical surface of many epithelia. Because aberrant intracellular localization of MUC1 in tumor cells correlates with an aggressive tumor and a poor prognosis for the patient, experiments were designed to characterize the features that modulate MUC1 membrane trafficking. By following [(35)S]Met/Cys-labeled MUC1 in glycosylation-defective Chinese hamster ovary cells, we found previously that truncation of O-glycans on MUC1 inhibited its surface expression and stimulated its internalization by clathrin-mediated endocytosis. To identify signals for MUC1 internalization that are independent of its glycosylation state, the ectodomain of MUC1 was replaced with that of Tac, and chimera endocytosis was measured by the same protocol. Endocytosis of the chimera was significantly faster than for MUC1, indicating that features of the highly extended ectodomain inhibit MUC1 internalization. Analysis of truncation mutants and tyrosine mutants showed that Tyr(20) and Tyr(60) were both required for efficient endocytosis. Mutation of Tyr(20) significantly blocked coimmunoprecipitation of the chimera with AP-2, indicating that Y(20)HPM is recognized as a YXXphi motif by the mu2 subunit. The tyrosine-phosphorylated Y(60)TNP was previously identified as an SH2 site for Grb2 binding, and we found that mutation of Tyr(60) blocked coimmunoprecipitation of the chimera with Grb2. This is the first indication that Grb2 plays a significant role in the endocytosis of MUC1.  相似文献   

15.
The MAM (meprin/A5-protein/PTPmu) domain is present in numerous proteins with diverse functions. PTPmu belongs to the MAM-containing subclass of protein-tyrosine phosphatases (PTP) able to promote cell-to-cell adhesion. Here we provide experimental evidence that the MAM domain is a homophilic binding site of PTPmu. We demonstrate that the MAM domain forms oligomers in solution and binds to the PTPmu ectodomain at the cell surface. The presence of two disulfide bridges in the MAM molecule was evidenced and their integrity was found to be essential for MAM homophilic interaction. Our data also indicate that PTPmu ectodomain forms oligomers and mediates the cellular adhesion, even in the absence of MAM domain homophilic binding. Reciprocally, MAM is able to interact homophilically in the absence of ectodomain trans binding. The MAM domain therefore contains independent cis and trans interaction sites and we predict that its main role is to promote lateral dimerization of PTPmu at the cell surface. This finding contributes to the understanding of the signal transduction mechanism in MAM-containing PTPs.  相似文献   

16.
Monoclonal antibodies (mAbs) against mucin 21 (MUC21), a human counterpart of mouse epiglycanin/Muc21, were prepared using human embryonic kidney 293 cells transfected with MUC21 as the immunogen. The specificity of these mAbs was examined by flow cytometry, immunoprecipitation and western blotting focusing on the differential glycosylation of MUC21 expressed in variant Chinese hamster ovary (CHO) cells (ldlD cells and Lec2 cells) and CHO-K1 cells. One of these mAbs, heM21D, bound to both the unmodified core polypeptide of MUC21 and MUC21 attached with N-acetylgalactosamine (Tn-MUC21). Six antibodies, including mAb heM21C, bound to MUC21 with Tn, T or sialyl-T epitopes but not the unmodified core polypeptide of MUC21. Esophageal squamous carcinomas and adjacent squamous epithelia were immunohistochemically examined for the binding of these mAbs. MUC21 was expressed in esophageal squamous epithelial cells, and its O-glycan extended forms were observed in the luminal portions of squamous epithelia. As revealed by the binding of mAb heM21D and the absence of reactivity with mAb heM21C, esophageal squamous carcinoma cells produce MUC21 without the attachment of O-glycans. This is the first report to show that there is a change in the glycoform of MUC21 that can be used to differentiate between squamous epithelia and squamous carcinoma of the esophagus. Thus, these antibodies represent a useful tool to characterize squamous epithelial differentiation and carcinogenesis.  相似文献   

17.
Bacterial translocation from the intestines   总被引:3,自引:0,他引:3  
Bacterial translocation is defined as the passage of viable bacteria from the gastrointestinal (GI) tract through the mucosal epithelium to other sites, such as the mesenteric lymph nodes, spleen, liver and blood. This paper reviews results from animal models utilized to obtain information concerning the defense mechanisms operating in the healthy host to confine bacteria to the GI tract. Gnotobiotic and antibiotic-decontaminated mice colonized with particular bacteria demonstrated that the indigenous GI flora maintains an ecologic equilibrium to prevent intestinal bacterial overgrowth and translocation from the GI tract. Studies with athymic (nu/nu) mice, thymus-grafted (nu/nu) mice, neonatally thymectomized mice, and mice injected with immunosuppressive agents demonstrated that the host immune system is another defense mechanism inhibiting bacterial translocation from the GI tract. Ricinoleic acid given orally to mice disrupted the intestinal epithelial barrier allowing indigenous bacteria to translocate from the GI tract. Thus, bacterial translocation from the GI tract of healthy adult mice is inhibited by: (a) an intact intestinal epithelial barrier, (b) the host immune defense system, and (c) an indigenous GI flora maintaining ecological equilibrium to prevent bacterial overgrowth. Deficiencies in host defense mechanisms act synergistically to promote bacterial translocation from the GI tract as demonstrated by animal models with multiple alterations in host defenses. Bacterial translocation occurred to a greater degree in mice with streptozotocin-induced diabetes, mice receiving nonlethal thermal injury, and mice receiving the combination of an immunosuppressive agent plus an oral antibiotic than in mice with only a primary alteration in host defenses. The study of bacterial translocation in these complex models suggests that opportunistic infections from the GI tract occur in discrete stages. In the healthy adult animal, bacterial translocation from the GI tract either does not occur or occurs at a very low level and the host immune defenses eliminate the translocating bacteria. Bacterial translocation does take place if one of the host defense mechanisms is compromised, such as a deficiency in the immune response, bacterial overgrowth in the intestines, or an increase in the permeability of the intestinal barrier. In this first stage, the bacteria usually translocate in low numbers to the mesenteric lymph node, and sometimes spleen or liver, but do not multiply and spread systemically.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The membrane-bound mucin MUC17 (mouse homolog Muc3) is highly expressed on the apical surface of intestinal epithelia and is thought to play a role in epithelial restitution and protection. Therefore, we hypothesized that MUC17 has a role in protection of the intestinal mucosa against luminal pathogens. Human intestinal cell lines were transfected by electroporation (Caco-2 and HT 29/19A) and by retroviral expression vector (LS174T, a cell line with high levels of MUC17 expression) using MUC17 siRNA. Transepithelial electrical resistance, permeability, tight-junction protein expression, adhesion, and invasion in response to enteroinvasive Escherichia coli (EIEC) were measured in all cell lines. In some experiments, the effect of the addition of exogenous purified crude mucin or recombinant Muc3 cysteine-rich domain protein (Muc3 CRD1-L-CRD2) as preventative or protective treatment was tested. Reduction of endogenous MUC17 is associated with increased permeability, inducible nitric oxide synthase and cyclooxygenase 2 induction, and enhanced bacterial invasion in response to EIEC exposure. Bacterial adhesion is not affected. Exogenous mucin (Muc3) and recombinant Muc3CRD treatment had a small but significant effect in attenuating the effects of EIEC infection. In conclusion, these data suggest that both native and exogenous MUC17 play a role in attachment and invasion of EIEC in colonic cell lines and in maintaining epithelial barrier function.  相似文献   

19.
20.
IL-22, an IL-10 family cytokine, is produced by different leukocyte subsets, including T cells, NK cells and lymphoid tissue inducer (LTi) cells. IL-22 mediates the crosstalk between leukocytes and tissue epithelia because its receptor is preferentially expressed on various tissue epithelial cells. IL-22 is essential for host defense against infections of extracellular pathogens, such as bacteria and yeasts, by eliciting various innate defensive mechanisms from tissue epithelial cells and promoting wound-healing responses. In autoimmune diseases, however, diverse tissue microenvironments and underlying pathogenic mechanisms may result in opposing contributions of IL-22 in disease progression. For example, in psoriasis, IL-22 can synergize with other proinflammatory cytokines to induce many of the pathogenic phenotypes from keratinocytes and exacerbate disease progression. In contrast, IL-22 plays a beneficial role in IBD by enhancing barrier integrity and epithelial innate immunity of intestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号