首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deep brain stimulation   总被引:9,自引:0,他引:9  
During the last decade deep brain stimulation (DBS) has become a routine method for the treatment of advanced Parkinsons disease (PD), leading to striking improvements in motor function and quality of life of PD patients. It is associated with minimal morbidity. The rationale of targeting specific structures within basal ganglia such as the subthalamic nucleus (STN) or the internal segment of the globus pallidus (GPi) is strongly supported by the current knowledge of the basal ganglia pathophysiology, which is derived from extensive experimental work and which provides the theoretical basis for surgical therapy in PD. In particular, the STN has advanced to the worldwide most used target for DBS in the treatment of PD, due to the marked improvement of all cardinal symptoms of the disease. Moreover on-period dyskinesias are reduced in parallel with a marked reduction of the equivalent daily levodopa dose following STN–DBS. The success of the therapy largely depends on the selection of the appropriate candidate patients and on the precise implantation of the stimulation electrode, which necessitates careful imaging-based pre-targeting and extensive electrophysiological exploration of the target area. Despite the clinical success of the therapy, the fundamental mechanisms of high-frequency stimulation are still not fully elucidated. There is a large amount of evidence from experimental and clinical data that stimulation frequency represents a key factor with respect to clinical effect of DBS. Interestingly, high-frequency stimulation mimics the functional effects of ablation in various brain structures. The main hypotheses for the mechanism of high-frequency stimulation are: (1) depolarization blocking of neuronal transmission through inactivation of voltage dependent ion-channels, (2) jamming of information by imposing an efferent stimulation-driven high-frequency pattern, (3) synaptic inhibition by stimulation of inhibitory afferents to the target nucleus, (4) synaptic failure by stimulation-induced neurotransmitter depletion. As the hyperactivity of the STN is considered a functional hallmark of PD and as there is experimental evidence for STN-mediated glutamatergic excitotoxicity on neurons of the substantia nigra pars compacta (SNc), STN–DBS might reduce glutamatergic drive, leading to neuroprotection. Further studies will be needed to elucidate if STN–DBS indeed provides a slow-down of disease progression.  相似文献   

3.
Relationship between eye ability to perceive smooth motion under stroboscopic stimulation on forward motion (from which stationary positions of the object) in the plane perpendicular to the look line was found. For diagnostics and occupational selection it is suggested to carry out stimulation in several directions thus obtaining additional information about the visual system of the person under test.  相似文献   

4.
Self-motion disturbs the stability of retinal images by inducing optic flow. Objects of interest need to be fixated or tracked, yet these eye movements can infringe on the experienced retinal flow that is important for visual navigation. Separating the components of optic flow caused by an eye movement from those due to self-motion, as well as using optic flow for visual navigation while simultaneously maintaining visual acuity on near targets, represent key challenges for the visual system. Here we summarize recent advances in our understanding of how the visuomotor and vestibulomotor systems function and interact, given the complex task of compensating for instabilities of retinal images, which typically vary as a function of retinal location and differ for each eye.  相似文献   

5.
Deep brain stimulation at high frequency was first used in 1997 to replace thalamotomy in treating the characteristic tremor of Parkinson's disease, and has subsequently been applied to the pallidum and the subthalamic nucleus. The subthalamic nucleus is a key node in the functional control of motor activity in the basal ganglia. Its inhibition suppresses symptoms in animal models of Parkinson's disease, and high frequency chronic stimulation does the same in human patients. Acute and long-term results after deep brain stimulation show a dramatic and stable improvement of a patient's clinical condition, which mimics the effects of levodopa treatment. The mechanism of action may involve a functional disruption of the abnormal neural messages associated with the disease. Long-term changes, neural plasticity and neural protection might be induced in the network. Similar effects of stimulation and lesioning have led to the extension of this technique for other targets and diseases.  相似文献   

6.
Deep brain stimulation for treatment-resistant depression   总被引:31,自引:0,他引:31  
Treatment-resistant depression is a severely disabling disorder with no proven treatment options once multiple medications, psychotherapy, and electroconvulsive therapy have failed. Based on our preliminary observation that the subgenual cingulate region (Brodmann area 25) is metabolically overactive in treatment-resistant depression, we studied whether the application of chronic deep brain stimulation to modulate BA25 could reduce this elevated activity and produce clinical benefit in six patients with refractory depression. Chronic stimulation of white matter tracts adjacent to the subgenual cingulate gyrus was associated with a striking and sustained remission of depression in four of six patients. Antidepressant effects were associated with a marked reduction in local cerebral blood flow as well as changes in downstream limbic and cortical sites, measured using positron emission tomography. These results suggest that disrupting focal pathological activity in limbic-cortical circuits using electrical stimulation of the subgenual cingulate white matter can effectively reverse symptoms in otherwise treatment-resistant depression.  相似文献   

7.
Recent work on the coding of spatial information in the brain has significantly advanced our knowledge of sensory to motor transformations on several fronts. The encoding of information referenced to the retina (eye-centered) but modulated by eye position, called a gain field representation, has proved to be very common throughout parietal and occipital cortex. The use of an eye-centered representation as a working memory of spatial location is problematic if the eyes move during the memory period. Details regarding the manner in which the brain solves this problem are beginning to emerge. Finally, the discovery of eye-centered representations of ongoing or intended arm movements has changed the way we think about the order of operations in the sensory to motor coordinate transformation.  相似文献   

8.
Wichmann T  Delong MR 《Neuron》2006,52(1):197-204
In the 1960s, ablative stereotactic surgery was employed for a variety of movement disorders and psychiatric conditions. Although largely abandoned in the 1970s because of highly effective drugs, such as levodopa for Parkinson's disease (PD), and a reaction against psychosurgery, the field has undergone a virtual renaissance, guided by a better understanding of brain circuitry and the circuit abnormalities underlying movement disorders such as PD and neuropsychiatric conditions, such as obsessive compulsive disorder. High-frequency electrical deep brain stimulation (DBS) of specific targets, introduced in the early 1990s for tremor, has gained widespread acceptance because of its less invasive, reversible, and adjustable features and is now utilized for an increasing number of brain disorders. This review summarizes the rationale behind DBS and the use of this technique for a variety of movement disorders and neuropsychiatric diseases.  相似文献   

9.
10.
Abstract

Introduction: Deep brain stimulation (DBS) is a standard surgical treatment method which is generally applied to subthalamic nucleus in Parkinson’s patients in cases where medical treatment is insufficient in treating the motor symptoms. It is known that Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) treats many motor symptoms. However, the results of studies on speech and voice vary. The aim of the study is analysing the effect of STN-DBS on the characteristics of voice.

Materials/methods: A total of 12 patients, (8 male–4 female) with an age average of 58.8?±?9.6, who have been applied DBS surgery on STN included in the study. The voice recordings of the patients have been done prior to surgery and 6?months after the surgery. The evaluation of voice has been carried out through the instrumental method. The patients’ voice recordings of the /a,e,i/ vowels have been done. The obtained recordings were evaluated by the Praat programme and the effects on jhitter, shimmer, fundamental frequency (F0) and noise harmonic rate (NHR) were analysed.

Results: Numerical values of F0 of all female participants have been decreased for all of the vowels postoperatively. In the females; jhitter and fraction parameters were found to be significantly different (0.056 and 0.017, perspectively) for the vowel /e/. In addition, p values in the shimmer for vowels /e,i/ were thought to be clinically significant (.087, .079 and .076) respectively. All these changes in second measurements were found to indicate worsening vocal quality after the DBS in females. In males, there is not any significant difference observed between two measures in any of the parameters of any vowels.

Conclusions: Acoustic voice quality deteriorated after STN-DBS predominantly for females however this deterioration was not prominent audio-perceptually. This finding commented as a result of the fact that that voice quality deviance of the participants was not severe.  相似文献   

11.
Abdominal muscles are the most important expiratory muscles for coughing. Spinal cord-injured patients have respiratory complications because of abdominal muscle weakness and paralysis and impaired ability to cough. We aimed to determine the optimal positioning of stimulating electrodes on the trunk for the noninvasive electrical activation of the abdominal muscles. In six healthy subjects, we compared twitch pressures produced by a single electrical pulse through surface electrodes placed either posterolaterally or anteriorly on the trunk with twitch pressures produced by magnetic stimulation of nerve roots at the T(10) level. A gastroesophageal catheter measured gastric pressure (Pga) and esophageal pressure (Pes). Twitches were recorded at increasing stimulus intensities at functional residual capacity (FRC) in the seated posture. The maximal intensity used was also delivered at total lung capacity (TLC). At FRC, twitch pressures were greatest with electrical stimulation posterolaterally and magnetic stimulation at T(10) and smallest at the anterior site (Pga, 30 +/- 3 and 33 +/- 6 cm H(2)O vs. 12 +/- 3 cm H(2)O; Pes 8 +/- 2 and 11 +/- 3 cm H(2)O vs. 5 +/- 1 cm H(2)O; means +/- SE). At TLC, twitch pressures were larger. The values for posterolateral electrical stimulation were comparable to those evoked by thoracic magnetic stimulation. The posterolateral stimulation site is the optimal site for generating gastric and esophageal twitch pressures with electrical stimulation.  相似文献   

12.
13.
14.
Deep brain stimulation (DBS) was introduced as a treatment for patients with parkinsonism and other movement disorders in the early 1990s. The technique rapidly became the treatment of choice for these conditions, and is now also being explored for other diseases, including Tourette syndrome, gait disorders, epilepsy, obsessive-compulsive disorder, and depression. Although the mechanism of action of DBS remains unclear, it is recognized that DBS works through focal modulation of functionally specific circuits. The fact that the same DBS parameters and targets can be used in multiple diseases suggests that DBS does not counteract the pathophysiology of any specific disorder, but acts to replace pathologic activities in disease-affected brain circuits with activity that is more easily tolerated. Despite the progress made in the use of DBS, much remains to be done to fully realize the potential of this therapy. We describe some of the most active areas of research in this field, both in terms of exploration of new targets and stimulation parameters, and in terms of new electrode or stimulator designs.  相似文献   

15.
Deep brain stimulation (DBS) is used to treat the motor symptoms of Parkinson's disease patients by stimulating the subthalamic nucleus. However, optimization of DBS is still needed since the performance of the neural electrodes is limited by the body's response to the implant. This review discusses the issues with DBS, such as placement of electrodes, foreign body response, and electrode degradation. The current solutions to these technical issues include modifications to electrode material, coatings, and geometry.  相似文献   

16.
After control studies, using electrodes permanently implanted in the central visual system, squirrel monkeys and macaques were in most instances blinded by acute glaucoma. This permitted subsequent observation of eye movements. Ocular nystagmus developed in all cases. Beginning immediately upon recovery from anesthesia, and persisting for at least 1 year, the EEG of the striate cortex was characterized by totally flat periods up to several seconds in duration which were ended abruptly by a sharp "spike" trailed in turn by a ragged high voltage, slow pattern for another second or two. The great majority of these "spikes" from the blind striate cortex occurred within 60-200 msec after a saccadic eye movement, made either in nystagmus or attempted fixation. They were not dependent upon proprioception from the extraocular muscles. It is suggested that they represent a "corollary discharge" for movement of the eyes. The blind striate cortex was judged to be hyperexcitable on the basis of these saccade-associated "spikes", not often observable in intact monkeys, and from the increase both in response evoked by electrical stimulation of optic radiation and amplitude of the EEG in sleep.  相似文献   

17.
18.
19.
20.
Extra-dural or cerebroventricular intracranial pressure was measured in 7 unanaesthetized fetal sheep (123-137 days gestation). Basal intracranial pressure was 6.7 +/- 1.7 mmHg, but there were many transient increases of pressure in association with spontaneous changes of amniotic pressure, fetal intrathoracic pressure, and particularly when the fetal nuchal muscles were active. These spontaneous increases of intracranial pressure were often associated with cessation of breathing movements and change of the electrocorticogram from low to high voltage activity. To test whether increased intracranial pressure influenced breathing movements and electrocortical activity, intracranial pressure was raised either by occluding the superior vena cava for 1 min with an implanted extravascular cuff, or by extra-dural injection of 0.3-1.0 ml of 0.9% NaCl. Increasing the intracranial pressure 5-15 mmHg by either method during low voltage electrocortical activity caused cessation of breathing movements, electro-ocular activity, and change of the electrocorticogram from low to high voltage in a significant proportion of trials. We propose that natural fluctuations of intracranial pressure caused by compression of the fetal body or skull, by body movements or by uterine activity, may cause changes in electrocortical activity and breathing movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号