首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Neuroserpin is a member of the serine proteinase inhibitor superfamily. It can undergo a conformational transition to form polymers that are associated with the dementia familial encephalopathy with neuroserpin inclusion bodies and the wild-type protein can inhibit the toxicity of amyloid-β peptides in Alzheimer's disease. We have used a single molecule fluorescence method, two color coincidence detection, to determine the rate-limiting steps of the early stages of the polymerization of fluorophore-labeled neuroserpin and have assessed how this process is altered in the presence of Aβ1-40. Our data show that neuroserpin polymerization proceeds first by the unimolecular formation of an active monomer, followed by competing processes of both polymerization and formation of a latent monomer from the activated species. These data are not in keeping with the recently proposed domain swap model of polymer formation in which the latent species and activated monomer are likely to be formed by competing pathways directly from the unactivated monomeric serpin. Moreover, the Aβ1-40 peptide forms a weak complex with neuroserpin (dissociation constant of 10 ± 5 nM) that increases the amount of active monomer thereby increasing the rate of polymerization. The Aβ1-40 is displaced from the complex so that it acts as a catalyst and is not incorporated into neuroserpin polymers.  相似文献   

2.
Neuroserpin is a member of the serpin superfamily. Point mutations in the neuroserpin gene underlie the autosomal dominant dementia, familial encephalopathy with neuroserpin inclusion bodies. This is characterized by the retention of ordered polymers of neuroserpin within the endoplasmic reticulum of neurons. pH has been shown to affect the propensity of several serpins to form polymers. In particular, low pH favors the formation of polymers of both α1‐antitrypsin and antithrombin. We report here opposite effects in neuroserpin, with a striking resistance to polymer formation at acidic pH. Mutation of specific histidine residues showed that this effect is not attributable to the shutter domain histidine as would be predicted by analogy with other serpins. Indeed, mutation of the shutter domain His338 decreased neuroserpin stability but had no effect on the pH dependence of polymerization when compared with the wild‐type protein. In contrast, mutation of His119 or His138 reduced the polymerization of neuroserpin at both acidic and neutral pH. These residues are at the lower pole of neuroserpin and provide a novel mechanism to control the opening of β‐sheet A and hence polymerization. This mechanism is likely to have evolved to protect neuroserpin from the acidic environment of the secretory granules.  相似文献   

3.
The serpinopathies are a group of inherited disorders that share as their molecular basis the misfolding and polymerization of serpins, an important class of protease inhibitors. Depending on the identity of the serpin, conditions arising from polymerization include emphysema, thrombosis, and dementia. The structure of serpin polymers is thus of considerable medical interest. Wild-type alpha(1)-antitrypsin will form polymers upon incubation at moderate temperatures and has been widely used as a model system for studying serpin polymerization. Using hydrogen/deuterium exchange and mass spectrometry, we have obtained molecular level structural information on the alpha(1)-antitrypsin polymer. We found that the flexible reactive center loop becomes strongly protected upon polymerization. We also found significant increases in protection in the center of beta-sheet A and in helix F. These results support a model in which linkage between serpins is achieved through insertion of the reactive center loop of one serpin into beta-sheet A of another. We have also examined the heat-induced conformational changes preceding polymerization. We found that polymerization is preceded by significant destabilization of beta-sheet C. On the basis of our results, we propose a mechanism for polymerization in which beta-strand 1C is displaced from the rest of beta-sheet C through a binary serpin/serpin interaction. Displacement of strand 1C triggers further conformational changes, including the opening of beta-sheet A, and allows for subsequent polymerization.  相似文献   

4.
The family of serpins is known to fold into a metastable state that is required for the proteinase inhibition mechanism. One of the consequences of this conformational flexibility is the tendency of some mutated serpins to form polymers, which occur through the insertion of the reactive center loop of one serpin molecule into the A-sheet of another. This "A-sheet polymerization" has remained an attractive explanation for the molecular mechanism of serpinopathies. Polymerization of serpins can also take place in vitro under certain conditions (e.g., pH or temperature). Surprisingly, on sodium dodecyl sulfate/polyacrylamide gel electrophoresis, bovSERPINA3-3 extracted from skeletal muscle or expressed in Escherichia coli was mainly observed as a homodimer. Here, in this report, by site-directed mutagenesis of recombinant bovSERPINA3-3, with substitution D371A, we demonstrate the importance of D371 for the intermolecular linkage observed in denaturing and reducing conditions. This residue influences the electrophoretic and conformational properties of bovSERPINA3-3. By structural modeling of mature bovSERPINA3-3, we propose a new "non-A-sheet swap" model of serpin homodimer in which D371 is involved at the molecular interface.  相似文献   

5.
In the present study, we have investigated the in vitro polymerization of human plasma AGT (angiotensinogen), a non-inhibitory member of the serpin (SERine Protease INhibitor) family. Polymerization of AGT is thought to contribute to a high molecular mass form of the protein in plasma that is increased in pregnancy and pregnancy-associated hypertension. The results of the present study demonstrate that the polymerization of AGT occurs through a novel mechanism which is primarily dependent on non-covalent linkages, while additional disulfide linkages formed after prolonged incubation are not essential for either formation or stability of polymers. We present the first analyses of AGT polymers by electron microscopy, CD spectroscopy, stability assays and sensitivity to proteinases and we conclude that their structure differs from the 'loop-sheet' polymers typical of inhibitory serpins. Histidine residues within the unique N-terminal extension of AGT appear to influence polymer formation, although polymer formation can still take place after their removal by renin. At a functional level, we show that AGT polymers are not substrates for renin, so polymerization of AGT in plasma would predictably lead to decreased formation of AngI (angiotensin I) with blood pressure lowering. Polymerization may therefore be an appropriate response to hypertension. The ability of AGT to protect its renin cleavage site through polymerization may explain why the AngI decapeptide has remained linked to the large and apparently inactive serpin body throughout evolution.  相似文献   

6.
The metastable serpin architecture is perturbed by extremes of temperature, pH, or changes in primary sequence resulting in the formation of inactive, polymeric conformations. Polymerization of a number of human serpins in vivo leads to diseases such as emphysema, thrombosis, and dementia, and in these cases mutations are present within the gene encoding the aggregating protein. Here we show that aggregation of the human serpin, proteinase inhibitor-9 (PI-9), occurs under physiological conditions, and forms aggregates that are morphologically distinct from previously characterized serpin polymers. Incubation of monomeric PI-9 at 37 degrees C leads to the rapid formation of aggregated PI-9. Using a variety of spectroscopic methods we analyzed the nature of the structures formed after incubation at 37 degrees C. Electron microscopy showed that PI-9 forms ordered circular and elongated-type aggregates, which also bind the fluorescent dye Thioflavin T. Our data show that in vitro wild-type PI-9 forms aggregates at physiological temperatures. The biological implications of PI-9 aggregates at physiological temperatures are discussed.  相似文献   

7.
Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.  相似文献   

8.
Members of the serine proteinase inhibitor (serpin) family play important roles in the inflammatory and coagulation cascades. Interaction of a serpin with its target proteinase induces a large conformational change, resulting in insertion of its reactive center loop (RCL) into the main body of the protein as a new strand within beta-sheet A. Intermolecular insertion of the RCL of one serpin molecule into the beta-sheet A of another leads to polymerization, a widespread phenomenon associated with a general class of diseases known as serpinopathies. Small peptides are known to modulate the polymerization process by binding within beta-sheet A. Here, we use fluorescence correlation spectroscopy (FCS) to probe the mechanism of peptide modulation of alpha(1)-antitrypsin (alpha(1)-AT) polymerization and depolymerization, and employ a statistical computationally-assisted design strategy (SCADS) to identify new tetrapeptides that modulate polymerization. Our results demonstrate that peptide-induced depolymerization takes place via a heterogeneous, multi-step process that begins with internal fragmentation of the polymer chain. One of the designed tetrapeptides is the most potent antitrypsin depolymerizer yet found.  相似文献   

9.
Serpin polymerization is the underlying cause of several diseases, including thromboembolism, emphysema, liver cirrhosis, and angioedema. Understanding the structure of the polymers and the mechanism of polymerization is necessary to support rational design of therapeutic agents. Here we show that polymerization of antithrombin is sensitive to the addition of synthetic peptides that interact with the structure. A 12-m34 peptide (homologous to P14-P3 of antithrombin reactive loop), representing the entire length of s4A, prevented polymerization totally. A 6-mer peptide (homologous to P14-P9 of antithrombin) not only allowed polymerization to occur, but induced it. This effect could be blocked by the addition of a 5-mer peptide with s1C sequence of antithrombin or by an unrelated peptide representing residues 26-31 of cholecystokinin. The s1C or cholecystokinin peptide alone was unable to form a complex with native antithrombin. Moreover, an active antitrypsin double mutant, Pro 361-->Cys, Ser 283-->Cys, was engineered for the purpose of forming a disulfide bond between s1C and s2C to prevent movement of s1C. This mutant was resistant to polymerization if the disulfide bridge was intact, but, under reducing conditions, it regained the potential to polymerize. We have also modeled long-chain serpin polymers with acceptable stereochemistry using two previously proposed loop-A-sheet and loop-C-sheet polymerization mechanisms and have shown both to be sterically feasible, as are "mixed" linear polymers. We therefore conclude that the release of strand 1C must be an element of the mechanism of serpin polymerization.  相似文献   

10.
The polymerization of serpins is at the root of a large class of diseases; the molecular structure of serpin polymers has been recently debated. In this work, we study the polymerization kinetics of human neuroserpin by Fourier Transform Infra Red spectroscopy and by time-lapse Size Exclusion Chromatography. First, we show that two distinct neuroserpin polymers, formed at 45 and 85°C, display the same isosbestic points in the Amide I' band, and therefore share common secondary structure features. We also find a concentration independent polymerization rate at 45°C suggesting that the polymerization rate-limiting step is the formation of an activated monomeric species. The polymer structures are consistent with a model that predicts the bare insertion of portions of the reactive center loop into the A β-sheet of neighboring serpin molecule, although with different extents at 45 and 85°C.  相似文献   

11.
Protein polymerization consists in the aggregation of single monomers into polymers that may fragment. Fibrils assembly is a key process in amyloid diseases. Up to now, protein aggregation was commonly mathematically simulated by a polymer size-structured ordinary differential equations (ODE) system, which is infinite by definition and therefore leads to high computational costs. Moreover, this Ordinary Differential Equation-based modeling approach implies biological assumptions that may be difficult to justify in the general case. For example, whereas several ordinary differential equation models use the assumption that polymerization would occur at a constant rate independently of polymer size, it cannot be applied to certain protein aggregation mechanisms. Here, we propose a novel and efficient analytical method, capable of modelling and simulating amyloid aggregation processes. This alternative approach consists of an integro-Partial Differential Equation (PDE) model of coalescence-fragmentation type that was mathematically derived from the infinite differential system by asymptotic analysis. To illustrate the efficiency of our approach, we applied it to aggregation experiments on polyglutamine polymers that are involved in Huntington’s disease. Our model demonstrates the existence of a monomeric structural intermediate acting as a nucleus and deriving from a non polymerizing monomer (). Furthermore, we compared our model to previously published works carried out in different contexts and proved its accuracy to describe other amyloid aggregation processes.  相似文献   

12.
A new method of characterizing molecularly imprinted polymers (MIPs) was developed and tested, which provides a more accurate means of identifying and measuring the molecular imprinting effect. In the new polar solvent titration method, a series of imprinted and non‐imprinted polymers were prepared in solutions containing increasing concentrations of a polar solvent. The polar solvent additives systematically disrupted the templation and monomer aggregation processes in the prepolymerization solutions, and the extent of disruption was captured by the polymerization process. The changes in binding capacity within each series of polymers were measured, providing a quantitative assessment of the templation and monomer aggregation processes in the imprinted and non‐imprinted polymers. The new method was tested using three different diphenyl phosphate imprinted polymers made using three different urea functional monomers. Each monomer had varying efficiencies of templation and monomer aggregation. The new MIP characterization method was found to have several advantages. To independently verify the new characterization method, the MIPs were also characterized using traditional binding isotherm analyses. The two methods appeared to give consistent conclusions. First, the polar solvent titration method is less susceptible to false positives in identifying the imprinting effect. Second, the method is able to differentiate and quantify changes in binding capacity, as measured at a fixed guest and polymer concentration, arising from templation or monomer aggregation processes in the prepolymerization solution. Third, the method was also easy to carry out, taking advantage of the ease of preparing MIPs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Alzheimer disease is characterized by extracellular plaques composed of Abeta peptides. We show here that these plaques also contain the serine protease inhibitor neuroserpin and that neuroserpin forms a 1:1 binary complex with the N-terminal or middle parts of the Abeta(1-42) peptide. This complex inactivates neuroserpin as an inhibitor of tissue plasminogen activator and blocks the loop-sheet polymerization process that is characteristic of members of the serpin superfamily. In contrast neuroserpin accelerates the aggregation of Abeta(1-42) with the resulting species having an appearance that is distinct from the mature amyloid fibril. Neuroserpin reduces the cytotoxicity of Abeta(1-42) when assessed using standard cell assays, and the interaction has been confirmed in vivo in novel Drosophila models of disease. Taken together, these data show that neuroserpin interacts with Abeta(1-42) to form off-pathway non-toxic oligomers and so protects neurons in Alzheimer disease.  相似文献   

14.
Nucleation of alpha 1-antichymotrypsin polymerization   总被引:3,自引:0,他引:3  
Alpha(1)-antichymotrypsin is an acute phase plasma protein and a member of the serpin superfamily. We show here that wildtype alpha(1)-antichymotrypsin forms polymers between the reactive center loop of one molecule and the beta-sheet A of a second at a rate that is dependent on protein concentration and the temperature of the reaction. The rate of polymerization was accelerated by seeding with polymers of alpha(1)-antichymotrypsin and a complex of alpha(1)-antichymotrypsin with an exogenous reactive loop peptide but not with reactive loop cleaved alpha(1)-antichymotrypsin or with polymers of other members of the serpin superfamily. Sonication of alpha(1)-antichymotrypsin polymers markedly increased the efficacy of seeding such that polymers were able to form under physiological conditions. Taken together, these data provide the first demonstration that serpin polymerization can result from seeding. This mechanism is analogous to the fibrillization of the Abeta(1-42) peptide and may be important in the deposition of alpha(1)-antichymotrypsin in the plaques of Alzheimer's disease.  相似文献   

15.
Antichymotrypsin, a member of the serpin superfamily, has been shown to form inactive polymers in vivo, leading to chronic obstructive pulmonary disease. At present, however, the molecular determinants underlying the polymerization transition are unclear. Within a serpin, the breach position is implicated in conformational change, as it is the first point of contact for the reactive center loop and the body of the molecule. W194, situated within the breach, represents one of the most highly conserved residues within the serpin architecture. Using a range of equilibrium and kinetic experiments, the contribution of W194 to proteinase inhibition, stability and polymerization was studied for antichymotrypsin. Replacement of W194 with phenylalanine resulted in a fully active inhibitor that was destabilized relative to the wild-type protein. The aggregation kinetics were significantly altered; wild-type antichymotrypsin exhibits a lag phase followed by chain elongation. The loss of W194 almost entirely removed the lag phase and accelerated the elongation phase. On the basis of our data, we propose that one of the main roles of W194 in antichymotrypsin is in preventing polymerization.  相似文献   

16.
Walker SI  Grover MA  Hud NV 《PloS one》2012,7(4):e34166
Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities.  相似文献   

17.
Human neuroserpin (hNS) is a serine protease inhibitor that belongs to the serpin superfamily and is expressed in nervous tissues. The serpin fold is generally characterized by a long exposed loop, termed the reactive center loop, that acts as bait for the target protease. Intramolecular insertion of the reactive center loop into the main serpin β-sheet leads to the serpin latent form. As with other known serpins, hNS pathological mutants have been shown to accumulate as polymers composed of quasi-native protein molecules. Although hNS polymerization has been intensely studied, a general agreement about serpin polymer organization is still lacking. Here we report a biophysical characterization of native hNS that is shown to undergo two distinct conformational transitions, at 55°C and 85°C, both leading to distinct latent and polymeric species. The latent and polymer hNS forms obtained at 45°C and 85°C differ in their chemical and thermal stabilities; furthermore, the hNS polymers also differ in size and morphology. Finally, the 85°C polymer shows a higher content of intermolecular β-sheet interactions than the 45°C polymer. Together, these results suggest a more complex conformational scenario than was previously envisioned, and, in a general context, may help reconcile the current contrasting views on serpin polymerization.  相似文献   

18.
This paper aimed at investigating the influence of polymerization temperature on the molecular recognition of molecularly imprinted polymers (MIPs) based on multiple non-covalent interactions. 3-l-Phenylalanylaminopyridine (3-l-PheNHPy) imprinted polymers were prepared using azobisnitriles as either thermal initiators or photoinitiators at various temperatures of 10, 40 and 60 degrees C, respectively. These polymers were subsequently evaluated in the high-performance liquid chromatographic (HPLC) mode for enantioselectivity. An unexpected result shows that polymer prepared at 40 degrees C has the highest enantioselectivity, but not the polymer prepared at lower temperature of 10 degrees C. Further, the effect of elution temperature and sample load on the selectivity of polymers was investigated in detail. In order to get a better understanding of the "exception", the influence of polymerization temperature on the polymerization extent and polymer morphology was studied by FT-IR spectrum test, cross-polarization magic angle spinning (CP-MAS) (13)NMR spectra experiment and pore analysis. Based on these results we attribute this "exception" to that there is a tradeoff between the extent of polymerization and stabilization of the template-functional monomer complexes. And an optimal polymerization temperature can be found for each combination of template and monomer.  相似文献   

19.
The native serpin architecture is extremely sensitive to mutation and environmental factors. These factors induce the formation of a partially folded species that results in the production of inactive loop-sheet polymers. The deposition of these aggregates in tissue, results in diseases such as liver cirrhosis, thrombosis, angioedema and dementia. In this study, we characterize the kinetics and conformational changes of alpha(1)-antitrypsin polymerization at pH 4 using tryptophan fluorescence, circular dichroism, turbidity changes and thioflavin T binding. These biophysical techniques have demonstrated that polymerization begins with a reversible conformational change that results in partial loss of secondary structure and distortion at the top of beta-sheet A. This is followed by two bimolecular processes. First, protodimers are formed, which can be dissociated by changing the pH back to 8. Then, an irreversible conformational change occurs, resulting in the stabilization of the dimers with a concomitant increase in beta-sheet structure, allowing for subsequent polymer extension. Electron microscopy analysis of the polymers, coupled with the far-UV CD and thioflavin T properties of the pH 4 polymers suggest they do not form via the classical loop-beta-sheet A linkage. However, they more closely resemble those formed by the pathological variant M(malton). Taken together, these data describe a novel kinetic mechanism of serine proteinase inhibitor polymerization.  相似文献   

20.
Cabrita LD  Dai W  Bottomley SP 《Biochemistry》2004,43(30):9834-9839
The intrinsic metastability of the serpin native state is the thermodynamic driving force for both proteinase inhibition and the formation of inactive polymers. A number of mechanisms has been proposed to explain how both these conformational changes are achieved. However, one aspect that has received little attention is the movement of the F-helix, which physically impedes both these events. We have applied a protein engineering approach to investigate the conformational changes of this helix during proteinase inhibition, serpin folding, and polymerization. We systematically mutated two highly conserved hydrophobic residues on the F-helix, V161 and I157, and in addition, removed a hydrogen bond between D149 and the first turn of the helix. Our data demonstrate that while all three interactions are important for the stability and folding of the molecule, their contribution during inhibition and polymerization differ. The presence of I157 is crucial to all conformational changes as its loss results in inactivation of the serpin and rapid polymerization. The replacement of D149 does not affect activity but significantly increases the polymerization rate. The interactions formed by V161 play an important role only in maintaining the native conformation. Taken together, these data suggest that the F-helix undergoes a reversible conformational change in both its N- and C-termini during proteinase inhibition only the C-terminus undergoes changes during polymerization, but there is a global change required for folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号