首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
嗜水气单胞菌胞外蛋白酶的化学修饰   总被引:9,自引:1,他引:8  
 蛋白酶是嗜水气单胞菌 (Aeromonashydrophila)的重要致病因子 .为研究其结构与功能之间的关系 ,用DEPC、EDC、PMSF、N AI等 9种化学修饰剂处理嗜水气单胞菌J 1株胞外蛋白酶ECPase54,然后检测残余酶活力 ,借以研究酶分子中氨基酸侧链基团与酶活性中心的关系 .结果表明 ,羧基、丝氨酸、ε 氨基、胍基等残基与酶活性无关 ;半胱氨酸残基与酶活性也无直接关系 ;而色氨酸、组氨酸、酪氨酸残基侧链以及二硫键的化学修饰引起酶活性的大幅度的下降 ,说明色氨酸、组氨酸、酪氨酸残基以及二硫键是酶活力所必需的基团  相似文献   

2.
W K?ller  P E Kolattukudy 《Biochemistry》1982,21(13):3083-3090
Cutinase from Fusarium solani f. sp. pisi was inhibited by diisopropyl fluorophosphate and phenylboronic acid, indicating the involvement of an active serine residue in enzyme catalysis. Quantitation of the number of phosphorylated serines showed that modification of one residue resulted in complete loss of enzyme activity. One essential histidine residue was modified with diethyl pyrocarbonate. This residue was buried in native cutinase and became accessible to chemical modification only after unfolding of the enzyme by sodium dodecyl sulfate. The modification of carboxyl groups with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the absence of sodium dodecyl sulfate did not result in inactivation of the enzyme; however, such modifications in the presence of sodium dodecyl sulfate resulted in complete loss of enzyme activity. The number of residues modified was determined by incorporation of [14C]glycine ethyl ester. Modification of cutinase in the absence of sodium dodecyl sulfate and subsequent unfolding of the enzyme with detergent in the presence of radioactive glycine ester showed that one buried carboxyl group per molecule of cutinase resulted in complete inactivation of the enzyme. Three additional peripheral carboxyl groups were modified in the presence of sodium dodecyl sulfate. Carbethoxylation of the essential histidine and subsequent incubation with the esterase substrate p-nitrophenyl [1-14C]acetate revealed that carbethoxycutinase was about 10(5) times less active than the untreated enzyme. The acyl-enzyme intermediate was stabilized under these conditions and was isolated by gel permeation chromatography. The results of the present chemical modification study indicate that catalysis by cutinase involves the catalytic triad and an acyl-enzyme intermediate, both characteristic for serine proteases.  相似文献   

3.
Functionally important carboxyl groups in glucoamylase G2 from Aspergillus niger were identified using a differential labelling approach which involved modification of the acarbose-inhibited enzyme with 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide (EAC) and inactivation by [3H]EAC following removal of acarbose. Subsequent sequence localization of the substituted acidic residues was facilitated by specific phenylthiohydantoins. The acid cluster Asp176, Glu179 and Glu180 reacted exclusively with [3H]EAC, while Asp112, Asp153, Glu259 and Glu389 had incorporated both [3H]EAC and EAC. It is conceivable that one or two of the [3H]EAC-labelled side chains act in catalysis while the other fully protected residue(s) participates in substrate binding probably together with the partially protected ones. Twelve carboxyl groups that reacted with EAC in the enzyme-acarbose complex were also identified. Asp176, Glu179 and Glu180 are all invariant in fungal glucoamylases. Glu180 was tentatively identified as a catalytic group on the basis of sequence alignments to catalytic regions in isomaltase and alpha-amylase. The partially radiolabelled Asp112 corresponds in Taka-amylase A to Tyr75 situated in a substrate binding loop at a distance from the site of cleavage. A possible correlation between carbodiimide modification of an essential carboxyl group and its role in the glucoamylase catalysis is discussed.  相似文献   

4.
J A Buechler  S S Taylor 《Biochemistry》1990,29(7):1937-1943
The catalytic subunit of cAMP-dependent protein kinase typically phosphorylates protein substrates containing basic amino acids preceding the phosphorylation site. To identify amino acids in the catalytic subunit that might interact with these basic residues in the protein substrate, the enzyme was treated with a water-soluble carbodiimide, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), in the presence of [14C]glycine ethyl ester. Modification of the catalytic subunit in the absence of substrates led to the irreversible, first-order inhibition of activity. Neither MgATP nor a 6-residue inhibitor peptide alone was sufficient to protect the catalytic subunit against inactivation by the carbodiimide. However, the inhibitor peptide and MgATP together completely blocked the inhibitory effects of EDC. Several carboxyl groups in the free catalytic subunit were radiolabeled after the catalytic subunit was modified with EDC and [14C]glycine ethyl ester. After purification and sequencing, these carboxyl groups were identified as Glu 107, Glu 170, Asp 241, Asp 328, Asp 329, Glu 331, Glu 332, and Glu 333. Three of these amino acids, Glu 331, Glu 107, and Asp 241, were labeled regardless of the presence of substrates, while Glu 333 and Asp 329 were modified to a slight extent only in the free catalytic subunit. Glu 170, Asp 328, and Glu 332 were all very reactive in the apoenzyme but fully protected from modification by EDC in the presence of MgATP and an inhibitor peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
α-半乳糖苷酶进行氨基酸组分分析,结果为含有较多的酸性及巯水性氨基酸,较少的组氨酸、酪氨酸及半胱氨酸。 用几种蛋白质侧链修饰试剂对α-半乳糖苷酶进行化学修饰。在一定条件下,当巯基及酪氨酸残基分别被NEM、IAA及NAI修饰后,酶活力不受影响,说明这些基团与活力无关。当羟基、组氨酸及色氨酸残基分别被EDC、DEP、NBS及HNBB修饰后,酶活力大幅度下降,说明这些基团或者参与了酯催化作用或者位于酯活性位区附近。  相似文献   

6.
Phosphatase I purified from a psychrophile (Shewanella sp.) [Tsuruta et al. (1998) J. Biochem. 123, 219-225] dephosphorylated O-phospho-L-tyrosine and phospho-tyrosyl residues in phosphorylated poly(Glu4,Tyr1) random polymer (polyEY) and phosphorylated myelin basic protein (MBP) but not phosphoseryl and/or phosphothreonyl residues in phosphorylated histone H1, casein and phosphorylase a, indicating that the enzyme showed protein-tyrosine-phosphatase (PTPase, EC 3.1.3.48)-like activity in vitro. The enzyme was remarkably inhibited by diethylpyrocarbonate (DEPC), monoiodoacetic acid (MIAA), and monoiodoacetamide (MIAM). Binding of 1 mol of DEPC to 1 mol of the enzyme caused complete inhibition of the enzyme; and 0.88 mol of 1-carboxymethylated histidine per mole of the enzyme was found when 90% of enzyme activity was lost by modification with 14C-MIAA. These results indicated that this psychrophilic enzyme was a PTPase-like enzyme with histidine as its catalytic residue.  相似文献   

7.
Dependences of lipoxygenase activity on pH, ionization enthalpies of various chemical groups, photoinactivation of the enzyme, and effects of specific reagents (p-CMB, DPF, and PMSF) were studied to identify catalytically active groups of the enzyme. The data suggest that the catalytic site of lipoxygenase includes imidazole and hydroxyl groups of histidine and serine residues, respectively.  相似文献   

8.
The carboxyl-specific amino acid modification reagent, Woodward's reagent K (WK), was utilized to characterize carboxyl residues (Asp and Glu) in the active site of human phenol sulfotransferase (SULT1A1). SULT1A1 was purified using the pMAL-c2 expression system in E. coli. WK inactivated SULT1A1 activity in a time- and concentration-dependent manner. The inactivation followed first-order kinetics relative to both SULT1A1 and WK. Both phenolic substrates and adenosine 3'-phosphate 5'-phosphosulfate (PAPS) protected against the inactivation, which suggests the carboxyl residue modification causing the inactivation took place within the active site of the enzyme. With partially inactivated SULT1A1, both V(max) and K(m) changed for PAPS, while for phenolic substrates, V(max) decreased and K(m) did not change significantly. A computer model of the three-dimensional structure of SULT1A1 was constructed based on the mouse estrogen sulfotransferase (mSULT1E1) X-ray crystal structure. According to the model, Glu83, Asp134, Glu246, and Asp263 are the residues likely responsible for the inactivation of SULT1A1 by WK. According to these results, five SULT1A1 mutants, E83A, D134A, E246A, D263A, and E151A, were generated (E151A as control mutant). Specific activity determination of the mutants demonstrated that E83A and D134A lost almost 100% of the catalytic activity. E246A and D263A also decreased SULT1A1 activity, while E151A did not change SULT1A1 catalytic activity significantly. This work demonstrates that carboxyl residues are present in the active site and are important for SULT1A1 catalytic activity. Glu83 and E134 are essential amino acids for SULT1A1 catalytic activity.  相似文献   

9.
用九种化学修饰剂研究了粘质赛氏菌SerratiaMarcescens41003(2)胞外蛋白酶分子中氨基酸侧链基团与酶催化活性的关系,结果表明组氨酸、丝氨酸、赖氨酸、精氨酸、谷氨酸及天冬氨酸等残基与酶活性无关;半胱氨酸残基与酶活性也无直接关系;而酪氨酸和色氨酸残基侧链的修饰引起酶活力大幅度下降,说明酪氨酸和色氨酸残基为酶活力必需.  相似文献   

10.
N-terminal His-tagged recombinant beta-1,4-galactosyltransferase from Neisseria meningitidis was expressed and purified to homogeneity by column chromatography using Ni-NTA resin. Mutations were introduced to investigate the roles of, Ser68, His69, Glu88, Asp90, and Tyr156, which are components of a highly conserved region in recombinant beta-1,4 galactosyltransferase. Also, the functions of three other cysteine residues, Cys65, Cys139, and Cys205, were investigated using site-directed mutagenesis to determine the location of the disulfide bond and the role of the sulfhydryl groups. Purified mutant galactosyltransferases, His69Phe, Glu88Gln and Asp90Asn completely shut down wild-type galactosyltransferase activity (1-3 %). Also, Ser68Ala showed much lower activity than wild-type galactosyltransferase (19 %). However, only the substitution of Tyr156Phe resulted in a slight reduction in galactosyltransferase activity (90 %). The enzyme was found to remain active when the cysteine residues at positions 139 and 205 were replaced separately with serine. However, enzyme reactivity was found to be markedly reduced when Cys65 was replaced with serine (27 %). These results indicate that conserved amino acids such as Cys65, Ser68, His69, Glu88, and Asp90 may be involved in the binding of substrates or in the catalysis of the galactosyltransferase reaction.  相似文献   

11.
The contributions to catalysis of the conserved catalytic aspartate (Asp149) in the phosphorylase kinase catalytic subunit (PhK; residues 1-298) have been studied by kinetic and crystallographic methods. Kinetic studies in solvents of different viscosity show that PhK, like cyclic AMP dependent protein kinase, exhibits a mechanism in which the chemical step of phosphoryl transfer is fast and the rate-limiting step is release of the products, ADP and phosphoprotein, and possibly viscosity-dependent conformational changes. Site-directed mutagenesis of Asp149 to Ala and Asn resulted in enzymes with a small increase in K(m) for glycogen phosphorylase b (GPb) and ATP substrates and dramatic decreases in k(cat) (1.3 x 10(4) for Asp149Ala and 4.7 x 10(3) for Asp149Asn mutants, respectively). Viscosometric kinetic measurements with the Asp149Asn mutant showed a reduction in the rate-limiting step for release of products by 4.5 x 10(3) and a significant decrease (possibly as great as 2.2 x 10(3)) in the rate constant characterizing the chemical step. The date combined with the crystallographic evidence for the ternary PhK-AMPPNP-peptide complex [Lowe et al. (1997) EMBO J. 6, 6646-6658] provide powerful support for the role of the carboxyl of Asp149 in binding and orientation of the substrate and in catalysis of phosphoryl transfer. The constitutively active subunit PhK has a glutamate (Glu182) residue in the activation segment, in place of a phosphorylatable serine, threonine, or tyrosine residue in other protein kinases that are activated by phosphorylation. Site-directed mutagenesis of Glu182 and other residues involved in a hydrogen bond network resulted in mutant proteins (Glu182Ser, Arg148Ala, and Tyr206Phe) with decreased catalytic efficiency (approximate average decrease in k(cat)/K(m) by 20-fold). The crystal structure of the mutant Glu182Ser at 2.6 A resolution showed a phosphate dianion about 2.6 A from the position previously occupied by the carboxylate of Glu182. There was no change in tertiary structure from the native protein, but the activation segment in the region C-terminal to residue 182 showed increased disorder, indicating that correct localization of the activation segment is necessary in order to recognize and present the protein substrate for catalysis.  相似文献   

12.
Koide A  Jordan MR  Horner SR  Batori V  Koide S 《Biochemistry》2001,40(34):10326-10333
It is generally considered that electrostatic interactions on the protein surface, such as ion pairs, contribute little to protein stability, although they may play important roles in conformational specificity. We found that the tenth fibronectin type III domain of human fibronectin (FNfn10) is more stable at acidic pH than neutral pH, with an apparent midpoint of transition near pH 4. Determination of pK(a)'s for all the side chain carboxyl groups of Asp and Glu residues revealed that Asp 23 and Glu 9 have an upshifted pK(a). These residues and Asp 7 form a negatively charged patch on the surface of FNfn10, with Asp 7 centrally located between Asp 23 and Glu 9, suggesting repulsive electrostatic interactions among these residues at neutral pH. Mutant proteins, D7N and D7K, in which Asp 7 was replaced with Asn and Lys, respectively, exhibited a modest but significant increase in stability at neutral pH, compared to the wild type, and they no longer showed pH dependence of stability. The pK(a)'s of Asp 23 and Glu 9 in these mutant proteins shifted closer to their respective unperturbed values, indicating that the unfavorable electrostatic interactions have been reduced in the mutant proteins. Interestingly, the wild-type and mutant proteins were all stabilized to a similar degree by the addition of 1 M sodium chloride at both neutral and acidic pH, suggesting that the repulsive interactions between the carboxyl groups cannot be effectively shielded by 1 M sodium chloride. These results indicate that repulsive interactions between like charges on the protein surface can destabilize a protein, and protein stability can be significantly improved by relieving these interactions.  相似文献   

13.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase) uses PP(i) as an energy donor and requires free Mg(2+) for enzyme activity and stability. To determine the catalytic domain, we analyzed charged residues (Asp(253), Lys(261), Glu(263), Asp(279), Asp(283), Asp(287), Asp(723), Asp(727), and Asp(731)) in the putative PP(i)-binding site and two conserved acidic regions of mung bean V-PPase by site-directed mutagenesis and heterologous expression in yeast. Amino acid substitution of the residues with alanine and conservative residues resulted in a marked decrease in PP(i) hydrolysis activity and a complete loss of H(+) transport activity. The conformational change of V-PPase induced by the binding of the substrate was reflected in the susceptibility to trypsin. Wild-type V-PPase was completely digested by trypsin but not in the presence of Mg-PP(i), while two V-PPase mutants, K261A and E263A, became sensitive to trypsin even in the presence of the substrate. These results suggest that the second acidic region is also implicated in the substrate hydrolysis and that at least two residues, Lys(261) and Glu(263), are essential for the substrate-binding function. From the observation that the conservative mutants K261R and E263D showed partial activity of PP(i) hydrolysis but no proton pump activity, we estimated that two residues, Lys(261) and Glu(263), might be related to the energy conversion from PP(i) hydrolysis to H(+) transport. The importance of two residues, Asp(253) and Glu(263), in the Mg(2+)-binding function was also suggested from the trypsin susceptibility in the presence of Mg(2+). Furthermore, it was found that the two acidic regions include essential common motifs shared among the P-type ATPases.  相似文献   

14.
The sequences Thr-Gly-Glu-Ser184 and Asp-Gln-Ser178 and individual residues Asp149, Asp157, and Asp162 in the sarcoplasmic reticulum Ca2(+)-ATPase are highly conserved throughout the family of cation-transporting ATPases. Mutant Thr181----Ala, Gly182----Ala, Glu183----Ala, and Glu183----Gln, created by in vitro mutagenesis, were devoid of Ca2+ transport activity. None of these mutations, however, affected phosphorylation of the enzyme by ATP in the presence of Ca2+ or by inorganic phosphate in the absence of Ca2+, indicating that the high affinity Ca2(+)-binding sites and the nucleotide-binding sites were intact. In each of these mutants, the ADP-sensitive phosphoenzyme intermediate (E1P) decayed to the ADP-insensitive form (E2P) very slowly relative to the wild-type enzyme, whereas E2P decayed at a rate similar to that of the wild-type enzyme. Thus, the inability of the mutants to transport Ca2+ was accounted for by an apparent block of the transport reaction at the E1P to E2P conformational transition. These results suggest that Thr181, Gly182, and Glu183 play essential roles in the conformational change between E1P and E2P. Mutation of Ser184, Asp157, or Ser178 had little or no effect on either Ca2+ transport activity or expression. Mutations of Asp149, Asp162, and Gln177, however, were poorly expressed. Where expression could be measured, in mutations to Asp162 and Gln177, Ca2+ transport activity was essentially equivalent to that of the wild-type enzyme.  相似文献   

15.
Flavodoxin from the nitrogen-fixing cyanobacteria Anabaena PCC 7119 forms an electron-transfer complex with ferredoxin--NADP+ reductase (FNR) from the same organism. The complex is mainly governed by electrostatic interactions between side-chain amino groups of the reductase and carboxyl residues of flavodoxin. In order to localize the binding site on flavodoxin, chemical modification of its carboxyl groups has been carried out. Treatment of flavodoxin with a water-soluble carbodiimide, N-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), in the presence of a nucleophile, glycine ethyl ester, caused a time-dependent modification of the protein that is responsible for the loss of its ability to participate as electron carrier in the photoreduction of NADP+ by chloroplast membranes, and also in NADPH--cytochrome-c reductase activity, by about 85%. Nevertheless, the ability of flavodoxin to receive electrons from the reducing side of photosystem I was much less affected. The inhibition was enhanced at low pH, suggesting that carboxylic acid groups were the target of chemical modification. Treated flavodoxin failed to form covalent complexes with FNR and the dissociation constant for the non-covalent complex with FNR was fourfold higher. After tryptic digestion of a sample of flavodoxin modified by EDC in the presence of [1-14C]glycine ethyl ester, two major radioactive peptides were isolated. The first protein fragment contained three carboxylic residues (Asp123, Asp126 and Asp129), corresponding to the region where long-chain flavodoxins show an insert compared to short-chain flavodoxins. The second peptide corresponded to a similar region, either in the amino acid sequence or in the three-dimensional structure of the protein and also containing three carboxyl groups (Asp144, Glu145 and Asp146). Four of these carboxyl groups (Asp123, Asp126, Asp144 and Asp146) are highly conserved in all long-chain flavodoxins, suggesting that they could play an essential role in substrate recognition.  相似文献   

16.
Residue-specific chemical modification of amino acid residues of the microsomal epoxide hydrolase (mEH) from Rhodosporidium toruloides UOFS Y-0471 revealed that the enzyme is inactivated through modification of Asp/Glu and His residues, as well as through modification of Ser. Since Asp acts as the nucleophile, and Asp/Glu and His serve as charge relay partners in the catalytic triad of microsomal and soluble epoxide hydrolases during epoxide hydrolysis, inactivation of the enzyme by modification of the Asp/Glu and His residues agrees with the established reaction mechanism of these enzymes. However, the inactivation of the enzyme through modification of Ser residues is unexpected, suggesting that a Ser in the catalytic site is indispensable for substrate binding by analogy of the role of Ser residues in the related L-2-haloacid dehalogenases, as well as the ATPase and phosphatase enzymes. Co2+, Hg2+, Ag+, Mg2+ and Ca2+ inhibited enzyme activity and EDTA increased enzyme activity. The activation energy for inactivation of the enzyme was 167 kJ mol–1. Kinetic constants for the enzyme could not be determined since unusual behaviour was displayed during hydrolysis of 1,2-epoxyoctane by the purified enzyme. Enantioselectivity w as strongly dependent on substrate concentration. When the substrate was added in concentrations ensuring two-phase conditions, the enantioselectivity was greatly enhanced. On the basis of these results, it is proposed that this enzyme acts at an interface, analogous to lipases.  相似文献   

17.
Chemical modification of phospholipase A2 (phosphatide 2-acyl-hydrolase, EC 3.1.1.4) from the venom of gaboon adder (Bitis gabonica) showed that histidine and lysine residues are essential for enzyme activity. Treatment with p-bromophenacyl bromide or pyridoxal 5'-phosphate resulted in the specific covalent modification of one histidine or a total of one lysine residue per molecule of enzyme, respectively, with a concomitant loss of enzyme activity. Competitive protection against modification and inactivation was afforded by the presence of Ca2+ and/or micellar concentrations of substrate analogue, lysophosphatidylcholine. Neither modification caused any significant conformational change, as judged from circular dichroic properties. Amino acid analyses and the alignment of peptides from cyanogen bromide and proteolytic cleavage of modified enzyme preparations delineated His-45 as the only residue modified by p-bromophenacyl bromide. However, pyridoxal 5'-phosphate was shown to have reacted not with a single lysine but with four different ones (residues 11, 33, 58 and 111) in such a manner that an overall stoichiometry of one modified lysine residue/molecule enzyme resulted. Apparently, the essential function of lysine could be fulfilled by any one out of these four residues.  相似文献   

18.
Chemical probing of histidine residues using specific modifiers, iodoacetic acid (IAA) and diethylpyrocarbonate (DEP) resulted in the inactivation of phytase (phy A). The kinetic theory of the substrate reaction during the modification of enzyme activity was applied to a study of the kinetics of the course of inactivation of phytase by IAA and DEP. The results suggested that histidine residues are involved in the active site of the enzyme. They also indicated that inactivation of the enzyme by IAA was via a complexing type inhibition, while the inhibition by DEP reaction involved a conformational change step before inactivation. The dissociation constant of the enzyme-inhibitor complex of IAA, the constant of the conformational change of DEP and the microscopic rate constants of two inhibitors were obtained.  相似文献   

19.
The effect of chemical modification of various amino acid residues on the enzymatic activity of glucoamylase from Asp. awamori was studied. Modification of the carboxyl groups by taurine in the presence of water-soluble carbodiimide results in complete inactivation of the enzyme. The inactivation process includes two steps, namely non-specific modification and modification of the active center carboxyls. The rate constants of inactivation at both steps were measured in the presence and absence of the substrate, i. e. maltose. It was shown that the enzyme is inactivated by N-bromosuccinimide. Based on the data on the protection of the enzyme active center by the substrates (maltooligosaccharides of various lengths), it was concluded that the essential tryptophane residue(s) is localized in the fourth subsite. Ethoxycarbonylation, nitration and acetylation of glucoamylase do not change the catalytic activity of the enzyme. The protein was shown to contain no SH-groups.  相似文献   

20.
Based on our first structural data of L-threonine dehydrogenase (TDH) of Pyrococcus horikoshii (PhTDH), we examined its catalytic mechanism. The structural analysis indicated that a catalytic zinc atom at the active centre of PhTDH is coordinated by four residues (Cys42, His67, Glu68 and Glu152) with low affinity. These residues are highly conserved in alcohol dehydrogenases (ADHs) and TDHs. Several PhTDH mutants were prepared with respect to Glu152 and other residues, relating to the proton relay system that is substantially a rate-limiting step in ADH. It was found that the E152D mutant showed 3-fold higher turnover rate and reduced affinities toward L-threonine and NAD(+), compared to wild-type PhTDH. The kinetic analysis of Glu152 mutants indicated that the carboxyl group of Glu152 is important for expressing the catalytic activity. The results obtained from pH dependency of kinetic parameters suggested that Glu152 to Asp substitution causes the enhancement of deprotonation of His47 or ionization of zinc-bound water and threonine in the enzyme-NAD(+) complex. Furthermore, it was predicted that the access of threonine substrate to the enzyme-NAD(+) complex induces a large conformational change in the active domain of PhTDH. From these results, we propose here that the proton relay system works as a catalytic mechanism of PhTDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号