首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatosensory neurons in teleosts and amphibians are sensitive to thermal, mechanical, or nociceptive stimuli [1, 2]. The two main types of such cells in zebrafish--Rohon-Beard and trigeminal neurons--have served as models for neural development [3-6], but little is known about how they encode tactile stimuli. The hindbrain networks that transduce somatosensory stimuli into a motor output encode information by using very few spikes in a small number of cells [7], but it is unclear whether activity in the primary receptor neurons is similarly efficient. To address this question, we manipulated the activity of zebrafish neurons with the light-activated cation channel, Channelrhodopsin-2 (ChR2) [8, 9]. We found that photoactivation of ChR2 in genetically defined populations of somatosensory neurons triggered escape behaviors in 24-hr-old zebrafish. Electrophysiological recordings from ChR2-positive trigeminal neurons in intact fish revealed that these cells have extremely low rates of spontaneous activity and can be induced to fire by brief pulses of blue light. Using this technique, we find that even a single action potential in a single sensory neuron was at times sufficient to evoke an escape behavior. These results establish ChR2 as a powerful tool for the manipulation of neural activity in zebrafish and reveal a degree of efficiency in coding that has not been found in primary sensory neurons.  相似文献   

2.
The rodent whisker-barrel system has been an ideal model for studying somatosensory representations in the cortex. However, it remains a challenge to experimentally stimulate whiskers with a given pattern under spatiotemporal precision. Recently the optogenetic manipulation of neuronal activity has made possible the analysis of the neuronal network with precise spatiotemporal resolution. Here we identified the selective expression of channelrhodopsin-2 (ChR2), an algal light-driven cation channel, in the large mechanoreceptive neurons in the trigeminal ganglion (TG) as well as their peripheral nerve endings innervating the whisker follicles of a transgenic rat. The spatiotemporal pattern of whisker irradiation thus produced a barrel-cortical response with a specific spatiotemporal pattern as evidenced by electrophysiological and functional MRI (fMRI) studies. Our methods of generating an optogenetic tactile pattern (OTP) can be expected to facilitate studies on how the spatiotemporal pattern of touch is represented in the somatosensory cortex, as Hubel and Wiesel did in the visual cortex.  相似文献   

3.
4.
MicroRNA-143 expression in dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
The unpleasant sensory and emotional experience of pain is initiated by excitation of primary afferent nociceptive neurons. Nerve damage or inflammation induces changes in nociceptive DRG neurons which contribute to both peripheral and central sensitization of pain-sensitive pathways. Recently, blockade of microRNA synthesis has been found to modulate the response of nociceptive neurons to inflammatory stimuli. However, little is known about the contributions of individual miRNAs to painful conditions. We compared miRNA expression in mouse sensory neurons and focussed on the localisation and control of miR-143. Using miRNA-arrays we compared the microRNA expression profile of intact lumbar DRG with one-day-old DRG cultures and found that nine miRNAs including miR-143 showed lower expression levels in cultures. Subsequent RT-qPCR confirmed array data and in-situ hybridisation localised miR-143 in the cytosol of sensory DRG neurons in situ and in vitro. Analysis of microbead-enriched neuron cultures showed significantly higher expression levels of miR-143 in isolectin B4 (I-B4) binding sensory neurons compared with neurons in the I-B4 negative flow-through fraction. In animal models of peripheral inflammation (injection of Complete Freund's Adjuvant, CFA) and nerve damage (transection of the sciatic nerve), we found that expression levels of miR-143 were significantly lower in DRGs ipsilateral to CFA injection or after nerve damage. Taken together, our data demonstrate for the first time miR-143 expression in nociceptive neurons. Since expression levels of miR-143 were higher in I-B4 positive neurons and declined in response to inflammation but not axotomy, miR-143 could selectively contribute to mRNA regulation in specific populations of nociceptors.  相似文献   

5.
Varicella zoster virus (VZV), a human alphaherpesvirus, causes varicella during primary infection. VZV reactivation from neuronal latency may cause herpes zoster, post herpetic neuralgia (PHN) and other neurologic syndromes. To investigate VZV neuropathogenesis, we developed a model using human dorsal root ganglia (DRG) xenografts in immunodeficient (SCID) mice. The SCID DRG model provides an opportunity to examine characteristics of VZV infection that occur in the context of the specialized architecture of DRG, in which nerve cell bodies are ensheathed by satellite glial cells (SGC) which support neuronal homeostasis. We hypothesized that VZV exhibits neuron-subtype specific tropism and that VZV tropism for SGC contributes to VZV-related ganglionopathy. Based on quantitative analyses of viral and cell protein expression in DRG tissue sections, we demonstrated that, whereas DRG neurons had an immature neuronal phenotype prior to implantation, subtype heterogeneity was observed within 20 weeks and SGC retained the capacity to maintain neuronal homeostasis longterm. Profiling VZV protein expression in DRG neurons showed that VZV enters peripherin+ nociceptive and RT97+ mechanoreceptive neurons by both axonal transport and contiguous spread from SGC, but replication in RT97+ neurons is blocked. Restriction occurs even when the SGC surrounding the neuronal cell body were infected and after entry and ORF61 expression, but before IE62 or IE63 protein expression. Notably, although contiguous VZV spread with loss of SGC support would be predicted to affect survival of both nociceptive and mechanoreceptive neurons, RT97+ neurons showed selective loss relative to peripherin+ neurons at later times in DRG infection. Profiling cell factors that were upregulated in VZV-infected DRG indicated that VZV infection induced marked pro-inflammatory responses, as well as proteins of the interferon pathway and neuroprotective responses. These neuropathologic changes observed in sensory ganglia infected with VZV may help to explain the neurologic sequelae often associated with zoster and PHN.  相似文献   

6.
The Thy1.2 YFP-16 mouse expresses yellow fluorescent protein (YFP) in specific subsets of peripheral and central neurons. The original characterization of this model suggested that YFP was expressed in all sensory neurons, and this model has been subsequently used to study sensory nerve structure and function. Here, we have characterized the expression of YFP in the sensory ganglia (DRG, trigeminal and vagal) of the Thy1.2 YFP-16 mouse, using biochemical, functional and anatomical analyses. Despite previous reports, we found that YFP was only expressed in approximately half of DRG and trigeminal neurons and less than 10% of vagal neurons. YFP-expression was only found in medium and large-diameter neurons that expressed neurofilament but not TRPV1. YFP-expressing neurons failed to respond to selective agonists for TRPV1, P2X2/3 and TRPM8 channels in Ca2+ imaging assays. Confocal analysis of glabrous skin, hairy skin of the back and ear and skeletal muscle indicated that YFP was expressed in some peripheral terminals with structures consistent with their presumed non-nociceptive nature. In summary, the Thy1.2 YFP-16 mouse expresses robust YFP expression in only a subset of sensory neurons. But this mouse model is not suitable for the study of nociceptive nerves or the function of such nerves in pain and neuropathies.  相似文献   

7.
The sensation of pain (nociception) is a critical factor in host defense during tissue injury and inflammation and is initiated at the site of injury by activation of primary afferent C-fiber and A-∂ nerve endings. Inflammation induces tissue alterations that sensitize these nociceptive nerve terminals, contributing to persistent pain. To understand this 'algesic tissue environment' and peripheral nervous signaling to the CNS and immune system, we examined cytokine and endothelial-related gene expression profiles in inflamed rat tissues and corresponding dorsal root ganglia (DRG) by microarray and RT-PCR following hind paw injection of carrageenan. In inflamed tissue, forty-two cytokine and endothelial-related genes exhibited elevated expression. In contrast, in DRG, only Scya2 (chemokine C-C motif ligand 2) mRNA was up-regulated, leading to an increase in its gene product monocyte chemoattractant protein-1. Scya2 mRNA was localized by in situ hybridization-immunocytochemical double-labeling to a subpopulation of vanilloid receptor-1 (transient receptor potential vanilloid subtype 1) containing neurons, and its expression was increased by direct transient receptor potential vanilloid subtype 1 stimulation with the vanilloid agonist resiniferatoxin, indicating sensitivity to nociceptive afferent activity. Our results are consistent with the idea that monocyte chemoattractant protein-1 at the site of peripheral injury and/or in DRG is involved in inflammatory hyperalgesia.  相似文献   

8.
R E Papka  D L McNeill 《Peptides》1992,13(4):761-767
Coexistence of immunoreactivity for calcitonin gene-related peptide (CGRP) and galanin (GAL) was examined in varicose nerve endings in female rat pelvic paracervical ganglia (PG) and in perikarya of lumbosacral dorsal root ganglia (DRG). Varicose peptide-containing nerves were closely adjacent to somata of neurons in the PG, certain somata being virtually surrounded by immunoreactive varicosities. Some nerve endings were immunoreactive for either CGRP or GAL; in others, immunoreactivity for CGRP and GAL coexisted. Likewise, many perikarya in DRG were CGRP immunoreactive, fewer were GAL immunoreactive, and in some immunoreactivity for CGRP and GAL coexisted. The results suggest there are subpopulations of neuropeptide-containing sensory nerve endings in the PG; some contain CGRP, some contain GAL, and in some CGRP and GAL coexist. These substances contained in sensory nerve endings could have important roles in pelvic ganglionic functions.  相似文献   

9.
In this study, transgenic mice in which membrane-linked enhanced green fluorescent protein (mGFP) is expressed from the Thy1.2 promoter were used. In these mice, a subpopulation of small to medium sized DRG neurons double stained for IB4 but not for CGRP. Most of the peripheral terminals traversed the dermis and ramify within the epidermis and form superficial terminals. Within the spinal cord, these afferents terminated exclusively within the substantia gelatinosa (SG). A second fibre type in the skin also expressed mGFP, and formed club-shaped endings towards the bases of hairs. Injury to the sciatic nerve resulted in mGFP loss from the SG ipsilateral to the nerve injury, but also in the corresponding region contralaterally. Together, these findings reveal the specificity of connectivity of a defined subpopulation of DRG sensory neurons innervating the epidermis and this will facilitate analysis of their physiological functions.  相似文献   

10.
大鼠初级感觉神经元P2X3受体的表达及其与SP的关系   总被引:1,自引:0,他引:1  
目的研究在大鼠初级感觉神经元细胞上P2X3受体的表达情况及其与P物质的关系。方法取SD大鼠背根神经节(DRG)和三叉神经节(TG)固定后切片;用抗P2X3受体抗体和抗SP抗体进行免疫组织化学反应,并通过两种不同的显色方法同时进行P2X3受体和SP的双标。结果P2X3免疫反应阳性细胞主要集中在小细胞和中等细胞(其中在TG,P2X3-ir阳性神经元约占整个细胞的24.8%;在DRG约31.7%的神经元是P2X3-ir阳性),并且在DRG和TG细胞上均存在有P2X3受体和SP共存(TG上的双标细胞占P2X3-ir阳性细胞总数的36.26%,DRG上占46.81%)。结论由于ATP门控阳离子通道受体P2X3本身就与伤害性感受的初级传入有关,而它与SP的共存可提示当组织中的ATP释放时可以通过P2X3受体作用于含SP的伤害性感觉神经末梢上,促使SP释放引起痛觉过敏。  相似文献   

11.
The somatosensory system processes information that organisms 'feel': joint position, muscle stretch, pain, pressure, temperature, and touch. The system is composed of a diverse array of peripheral nerve endings specialized to detect these sensory modalities. Several recent discoveries have shed light on the genetic pathways that control specification and differentiation of these neurons, how they accurately innervate their central and peripheral targets, and the molecules that enable them to detect mechanical stimuli. Here, we review the cadre of genes that control these processes, focusing on mechanosensitive neurons and support cells of the skin that mediate different aspects of the sense of touch.  相似文献   

12.
Nerve growth factor induces P2X(3) expression in sensory neurons   总被引:3,自引:0,他引:3  
Glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) are neuroprotective for subpopulations of sensory neurons and thus are candidates for pain treatment. However, delivering these factors to damaged neurons will invariably result in undamaged systems also being treated, with possible consequences for sensory processing. In sensory neurons the purinergic receptor P2X(3) is found predominantly in GDNF-sensitive nociceptors. ATP signalling via the P2X(3) receptor may contribute to pathological pain, suggesting an important role for this receptor in regulating nociceptive function. We therefore investigated the effects of intrathecal GDNF or NGF on P2X(3) expression in adult rat spinal cord and dorsal root ganglia (DRG). In control spinal cords, P2X(3) expression was restricted to a narrow band of primary afferent terminals within inner lamina II (II(i)). Glial cell line-derived neurotrophic factor treatment increased P2X(3) immunoreactivity within lamina II(i) but not elsewhere in the cord. Nerve growth factor treatment, however, induced novel P2X(3) expression, with intense immunoreactivity in axons projecting to lamina I and outer lamina II and to the ventro-medial afferent bundle beneath the central canal. In the normal DRG, we found a greater proportion of P2X(3)-positive neurons at cervical levels, many of which were large-diameter and calcitonin gene-related peptide-positive. In both cervical and lumbar DRG, the number of P2X(3)-positive cells increased following GDNF or NGF treatment. De novo expression of P2X(3) in NGF-sensitive nociceptors may contribute to chronic inflammatory pain.  相似文献   

13.
Optogenetic control of the peripheral nervous system (PNS) would enable novel studies of motor control, somatosensory transduction, and pain processing. Such control requires the development of methods to deliver opsins and light to targeted sub-populations of neurons within peripheral nerves. We report here methods to deliver opsins and light to targeted peripheral neurons and robust optogenetic modulation of motor neuron activity in freely moving, non-transgenic mammals. We show that intramuscular injection of adeno-associated virus serotype 6 enables expression of channelrhodopsin (ChR2) in motor neurons innervating the injected muscle. Illumination of nerves containing mixed populations of axons from these targeted neurons and from neurons innervating other muscles produces ChR2-mediated optogenetic activation restricted to the injected muscle. We demonstrate that an implanted optical nerve cuff is well-tolerated, delivers light to the sciatic nerve, and optically stimulates muscle in freely moving rats. These methods can be broadly applied to study PNS disorders and lay the groundwork for future therapeutic application of optogenetics.  相似文献   

14.
15.
Development of sensory neurons in the absence of NGF/TrkA signaling in vivo   总被引:14,自引:0,他引:14  
Patel TD  Jackman A  Rice FL  Kucera J  Snider WD 《Neuron》2000,25(2):345-357
The neurotrophin survival dependence of peripheral neurons in vitro is regulated by the proapoptotic BCL-2 homolog BAX. To study peripheral neuron development in the absence of neurotrophin signaling, we have generated mice that are double null for BAX and nerve growth factor (NGF), and BAX and the NGF receptor TrkA. All dorsal root ganglion (DRG) neurons that normally die in the absence of NGF/TrkA signaling survive if BAX is also eliminated. These neurons extend axons through the dorsal roots and collateral branches into the dorsal horn. In contrast, superficial cutaneous innervation is absent. Furthermore, rescued sensory neurons fail to express biochemical markers characteristic of the nociceptive phenotype. These findings establish that NGF/TrkA signaling regulates peripheral target field innervation and is required for the full phenotypic differentiation of sensory neurons.  相似文献   

16.
17.
It has previously been observed that expression of chemokine monocyte chemoattractant protein-1 (MCP-1/CC chemokine ligand 2 (CCL2)) and its receptor CC chemokine receptor 2 (CCR2) is up-regulated by dorsal root ganglion (DRG) neurons in association with rodent models of neuropathic pain. MCP-1 increases the excitability of nociceptive neurons after a peripheral nerve injury, while disruption of MCP-1/CCR2 signaling blocks the development of neuropathic pain, suggesting MCP-1 signaling is responsible for heightened pain sensitivity. To define the mechanisms of MCP-1 signaling in DRG, we studied intracellular processing, release, and receptor-mediated signaling of MCP-1 in DRG neurons. We found that in a focal demyelination model of neuropathic pain both MCP-1 and CCR2 were up-regulated by the same neurons including transient receptor potential vanilloid receptor subtype 1 (TRPV1) expressing nociceptors. MCP-1 expressed by DRG neurons was packaged into large dense-core vesicles whose release could be induced from the soma by depolarization in a Ca2+-dependent manner. Activation of CCR2 by MCP-1 could sensitize nociceptors via transactivation of transient receptor potential channels. Our results suggest that MCP-1 and CCR2, up-regulated by sensory neurons following peripheral nerve injury, might participate in neural signal processing which contributes to sustained excitability of primary afferent neurons.  相似文献   

18.
High voltage-activated calcium channels (HVACCs) are essential for synaptic and nociceptive transmission. Although blocking HVACCs can effectively reduce pain, this treatment strategy is associated with intolerable adverse effects. Neuronal HVACCs are typically composed of α(1), β (Cavβ), and α(2)δ subunits. The Cavβ subunit plays a crucial role in the membrane expression and gating properties of the pore-forming α(1) subunit. However, little is known about how nerve injury affects the expression and function of Cavβ subunits in primary sensory neurons. In this study, we found that Cavβ(3) and Cavβ(4) are the most prominent subtypes expressed in the rat dorsal root ganglion (DRG) and dorsal spinal cord. Spinal nerve ligation (SNL) in rats significantly increased mRNA and protein levels of the Cavβ(3), but not Cavβ(4), subunit in the DRG. SNL also significantly increased HVACC currents in small DRG neurons and monosynaptic excitatory postsynaptic currents of spinal dorsal horn neurons evoked from the dorsal root. Intrathecal injection of Cavβ(3)-specific siRNA significantly reduced HVACC currents in small DRG neurons and the amplitude of monosynaptic excitatory postsynaptic currents of dorsal horn neurons in SNL rats. Furthermore, intrathecal treatment with Cavβ(3)-specific siRNA normalized mechanical hyperalgesia and tactile allodynia caused by SNL but had no significant effect on the normal nociceptive threshold. Our findings provide novel evidence that increased expression of the Cavβ(3) subunit augments HVACC activity in primary sensory neurons and nociceptive input to dorsal horn neurons in neuropathic pain. Targeting the Cavβ(3) subunit at the spinal level represents an effective strategy for treating neuropathic pain.  相似文献   

19.
Hypotonicity induces TRPV4-mediated nociception in rat   总被引:18,自引:0,他引:18  
We hypothesized that TRPV4, a member of the transient receptor family of ion channels, functions as a sensory transducer for osmotic stimulus-induced nociception. We found that, as expected for a transducer molecule, TRPV4 protein is transported in sensory nerve distally toward the peripheral nerve endings. In vivo single-fiber recordings in rat showed that hypotonic solution activated 54% of C-fibers, an effect enhanced by the hyperalgesic inflammatory mediator prostaglandin E2. This osmotransduction causes nociception, since administration of a small osmotic stimulus into skin sensitized by PGE2 produced pain-related behavior. Antisense-induced decrease in expression of TRPV4 confirmed that the channel is required for hypotonic stimulus-induced nociception. Thus, we conclude that TRPV4 can function as an osmo-transducer in primary afferent nociceptive nerve fibers. Because this action is enhanced by an inflammatory mediator, TRPV4 may be important in pathological states and may be an attractive pharmacological target for the development of novel analgesics.  相似文献   

20.
To explore the function of genes expressed in adult mouse nociceptive neurons, we generated heterozygous knock-in mice expressing the tamoxifen-inducible Cre recombinase construct CreERT2 downstream of the Na(V)1.8 promoter. CreERT2 encodes a Cre recombinase (Cre) fused to a mutant estrogen ligand-binding domain (ERT2) that requires the presence of tamoxifen for activity. We have previously shown that heterozygous Na(V)1.8-Cre mice will delete loxP flanked genes specifically in nociceptive sensory neurons from embryonic day 14. We therefore used the same strategy of homologous recombination and mouse generation, substituting the Cre cassette with CreERT2. No functional Cre recombinase activity was found in CreERT2 mice crossed with reporter mice in the absence of tamoxifen. We found that, as with Na(V)1.8-Cre mice, functional Cre recombinase was present in nociceptive sensory neurons after tamoxifen induction in vivo. However, the percentage of dorsal root ganglion (DRG) neurons expressing functional Cre activity was much reduced (<10% of the number found in the Na(V)1.8-Cre mouse). We also examined Cre recombinase activity in sensory neurons in culture. After treatment with 1 muM tamoxifen for 48 h, 15% of DRG neurons showed Cre activity. Na(V)1.8-CreERT2 animals may thus be useful for single cell studies of the functional consequences of gene ablation in culture, but are unlikely to be useful for behavioral studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号