首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small RNAs that interact with Argonaute (AGO) proteins play central roles in RNA‐mediated silencing. MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice AGO, has specific functions in the development of pre‐meiotic germ cells and the progression of meiosis. Here, we show that MEL1, which is located mostly in the cytoplasm of germ cells, associates preferentially with 21‐nucleotide phased small interfering RNAs (phasiRNAs) that bear a 5′‐terminal cytosine. Most phasiRNAs are derived from 1171 intergenic clusters distributed on all rice chromosomes. From these clusters, over 700 large intergenic, non‐coding RNAs (lincRNAs) that contain the consensus sequence complementary to miR2118 are transcribed specifically in inflorescences, and cleaved within the miR2118 site. Cleaved lincRNAs are processed via DICER‐LIKE4 (DCL4) protein, resulting in production of phasiRNAs. This study provides the evidence that the miR2118‐dependent and the DCL4‐dependent pathways are both required for biogenesis of 21‐nt phasiRNAs associated with germline‐specific MEL1 AGO in rice, and over 700 lincRNAs are key factors for induction of this biogenesis during reproductive‐specific stages.  相似文献   

2.
MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice (Oryza sativa) Argonaute (AGO) protein, has been reported to function specifically at premeiotic and meiotic stages of germ cell development and is associated with a novel class of germ cell-specific small noncoding RNAs called phased small RNAs (phasiRNAs). MEL1 accumulation is temporally and spatially regulated and is eliminated after meiosis. However, the metabolism and turnover (i.e. the homeostasis) of MEL1 during germ cell development remains unknown. Here, we show that MEL1 is ubiquitinated and subsequently degraded via the proteasome pathway in vivo during late sporogenesis. Abnormal accumulation of MEL1 after meiosis leads to a semi-sterile phenotype. We identified a monocot-specific E3 ligase, XBOS36, a CULLIN RING-box protein, that is responsible for the degradation of MEL1. Ubiquitination at four K residues at the N terminus of MEL1 by XBOS36 induces its degradation. Importantly, inhibition of MEL1 degradation either by XBOS36 knockdown or by MEL1 overexpression prevents the formation of pollen at the microspore stage. Further mechanistic analysis showed that disrupting MEL1 homeostasis in germ cells leads to off-target cleavage of phasiRNA target genes. Our findings thus provide insight into the communication between a monocot-specific E3 ligase and an AGO protein during plant reproductive development.

The degradation of Argonaute protein MEL1 is mediated by a monocot-specific E3 ubiquitin ligase XBOS36 to avoid off-target regulation of phasiRNAs during rice sporogenesis.  相似文献   

3.
The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM) proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1), though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species.  相似文献   

4.
Proteins of the GW182 family are essential for miRNA-mediated gene silencing in animal cells; they interact with Argonaute proteins (AGOs) and are required for both the translational repression and mRNA degradation mediated by miRNAs. To gain insight into the role of the GW182–AGO1 interaction in silencing, we generated protein mutants that do not interact and tested them in complementation assays. We show that silencing of miRNA targets requires the N-terminal domain of GW182, which interacts with AGO1 through multiple glycine–tryptophan (GW)-repeats. Indeed, a GW182 mutant that does not interact with AGO1 cannot rescue silencing in cells depleted of endogenous GW182. Conversely, silencing is impaired by mutations in AGO1 that strongly reduce the interaction with GW182 but not with miRNAs. We further show that a GW182 mutant that does not localize to P-bodies but interacts with AGO1 rescues silencing in GW182-depleted cells, even though in these cells, AGO1 also fails to localize to P-bodies. Finally, we show that in addition to the N-terminal AGO1-binding domain, the middle and C-terminal regions of GW182 (referred to as the bipartite silencing domain) are essential for silencing. Together our results indicate that miRNA silencing in animal cells is mediated by AGO1 in complex with GW182, and that P-body localization is not required for silencing.  相似文献   

5.
6.
7.
8.
9.
The abundance of miR-132 ranges from constitutively high in the brain where it is necessary for neuronal development and function, to inducible expression in haematopoietic and endothelial cells where it controls angiogenesis and immune activation. We show that expression of AGO2, a protein central to miRNA-mediated gene silencing and miRNA biogenesis, is negatively regulated by miR-132. Using HeLa cells, we demonstrate that miR-132 interacts with the AGO2 mRNA 3′UTR and suppresses AGO2 expression and AGO2-dependent small RNA-mediated silencing. Similarly, miR-132 over-expression leads to AGO2 suppression in primary human dermal lymphatic endothelial cells (HDLECs). During phorbol myristate acetate (PMA)-activation of HDLECs, miR-132 is induced in a CREB-dependent manner and inhibition of miR-132 results in increased AGO2 expression. In agreement with the role of AGO2 in maintenance of miRNA expression, AGO2 suppression by miR-132 affects the steady state levels of miR-221 and miR-146a, two miRNAs involved in angiogenesis and inflammation, respectively. Our data demonstrate that the miRNA-silencing machinery is subject to autoregulation during primary cell activation through direct suppression of AGO2 by miR-132.  相似文献   

10.
PIWI‐interacting RNAs (piRNAs) are germ cell‐specific small RNAs essential for retrotransposon gene silencing and male germ cell development. In piRNA biogenesis, the endonuclease MitoPLD/Zucchini cleaves long, single‐stranded RNAs to generate 5′ termini of precursor piRNAs (pre‐piRNAs) that are consecutively loaded into PIWI‐family proteins. Subsequently, these pre‐piRNAs are trimmed at their 3′‐end by an exonuclease called Trimmer. Recently, poly(A)‐specific ribonuclease‐like domain‐containing 1 (PNLDC1) was identified as the pre‐piRNA Trimmer in silkworms. However, the function of PNLDC1 in other species remains unknown. Here, we generate Pnldc1 mutant mice and analyze small RNAs in their testes. Our results demonstrate that mouse PNLDC1 functions in the trimming of both embryonic and post‐natal pre‐piRNAs. In addition, piRNA trimming defects in embryonic and post‐natal testes cause impaired DNA methylation and reduced MIWI expression, respectively. Phenotypically, both meiotic and post‐meiotic arrests are evident in the same individual Pnldc1 mutant mouse. The former and latter phenotypes are similar to those of MILI and MIWI mutant mice, respectively. Thus, PNLDC1‐mediated piRNA trimming is indispensable for the function of piRNAs throughout mouse spermatogenesis.  相似文献   

11.
12.
13.
14.
15.
16.
17.
In a number of organisms, transgenes containing transcribed inverted repeats (IRs) that produce hairpin RNA can trigger RNA-mediated silencing, which is associated with 21-24 nucleotide small interfering RNAs (siRNAs). In plants, IR-driven RNA silencing also causes extensive cytosine methylation of homologous DNA in both the transgene "trigger" and any other homologous DNA sequences--"targets". Endogenous genomic sequences, including transposable elements and repeated elements, are also subject to RNA-mediated silencing. The RNA silencing gene ARGONAUTE4 (AGO4) is required for maintenance of DNA methylation at several endogenous loci and for the establishment of methylation at the FWA gene. Here, we show that mutation of AGO4 substantially reduces the maintenance of DNA methylation triggered by IR transgenes, but AGO4 loss-of-function does not block the initiation of DNA methylation by IRs. AGO4 primarily affects non-CG methylation of the target sequences, while the IR trigger sequences lose methylation in all sequence contexts. Finally, we find that AGO4 and the DRM methyltransferase genes are required for maintenance of siRNAs at a subset of endogenous sequences, but AGO4 is not required for the accumulation of IR-induced siRNAs or a number of endogenous siRNAs, suggesting that AGO4 may function downstream of siRNA production.  相似文献   

18.
19.
Argonaute (AGO) proteins interact with small RNAs to mediate gene silencing. C. elegans contains 27 AGO genes, raising the question of what roles these genes play in RNAi and related gene-silencing pathways. Here we describe 31 deletion alleles representing all of the previously uncharacterized AGO genes. Analysis of single- and multiple-AGO mutant strains reveals functions in several pathways, including (1) chromosome segregation, (2) fertility, and (3) at least two separate steps in the RNAi pathway. We show that RDE-1 interacts with trigger-derived sense and antisense RNAs to initiate RNAi, while several other AGO proteins interact with amplified siRNAs to mediate downstream silencing. Overexpression of downstream AGOs enhances silencing, suggesting that these proteins are limiting for RNAi. Interestingly, these AGO proteins lack key residues required for mRNA cleavage. Our findings support a two-step model for RNAi, in which functionally and structurally distinct AGOs act sequentially to direct gene silencing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号