首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The short-term effects of two levels of air temperature (ambient and warmed) and light (full light and ca. 10% of full light regimes) on the early growth and physiology of Picea asperata and Abies faxoniana seedlings was determined using open-top chambers (OTC). The OTC manipulation increased mean air temperature and soil surface temperature by 0.51°C and 0.34°C under the 60-year plantation, and 0.69°C and 0.41°C under the forest opening, respectively. Warming, with either full-light or low-light conditions, generally caused a significant increase in plant growth, biomass accumulation, and stimulated photosynthetic performance of P. asperata seedlings. However, the warming of A. faxoniana seedlings only significantly increased their growth under low-light conditions, possibly as a result of photoinhibition caused by full light, which may shield and/or impair the effects of warming manipulation, per se, on the growth and physiological performance of A. faxoniana seedlings. In response to warming, P. asperata seedlings allocated relatively more biomass to roots and A. faxoniana more to foliage under similar environments. This might provide A. faxoniana with an adaptive advantage when soil moisture was not limiting and an advantage to P. asperata if substantial moisture stress occurred. Warming markedly increased the efficiency of PSII in terms of the increase in F v/F m and photosynthetic pigment concentrations for the two conifer seedlings, but the effects of warming were generally more pronounced under low-light conditions than under full-light conditions. On balance, this study suggested that warming had a beneficial impact on the early growth and development of conifer seedlings, at least in the short term. Consequently, warming may lead to changes in forest regeneration dynamics and species composition for subalpine coniferous ecosystems under future climate change.  相似文献   

2.
Climate change projections forecast a warming and an associated change in the distribution and intensity of rainfalls. In the case of the Mediterranean area, this will be reflected in more frequent and severe drought periods in the future. Within a long-term (9 years) manipulation experiment, we aimed to study the effect of the soil drought (15–20% decreased soil moisture) and warming conditions (+1°C warming) projected for the next decades onto photosynthetic rates and water relations, and onto the antioxidant and anti-stress defense capacity of Erica multiflora, a common species of the dry Mediterranean coastal scrublands, in two different seasons, spring and summer. Results indicated that none of the applied treatments was severe enough to induce a pronounced negative response of photosynthesis in this species well adapted to harsh Mediterranean conditions, but also highlighted important seasonal differences. Photosynthesis was limited by photoinhibition in spring and by stomatal closure in summer. Isoprenoid emission and the level of enzymatic and non-enzymatic antioxidants were lower in summer than in spring, whereas pigment and total phenolic contents were generally higher in summer. Volatile isoprenoid emissions were largely inhibited by drought and were not stimulated by warming. Drought and warming increased the oxidation state of ascorbate and reduced total glutathione levels in spring, but not in summer. It is concluded that E. multiflora plants can adapt to prolonged drought and warming, at least at the level simulated by our manipulative experiment, through changes in the seasonal physiological and antioxidant response of leaves.  相似文献   

3.
A field experiment involving drought and warming manipulation was conducted over a 6-year period in a Mediterranean shrubland to simulate the climate conditions projected by IPCC models for the coming decades (20% decreased soil moisture and 1°C warming). We investigated P and K concentration and accumulation in the leaves and stems of the dominant species, and in soil. Drought decreased P concentration in Globularia alypum leaves (21%) and in Erica multiflora stems (30%) and decreased K concentration in the leaves of both species (20% and 29%, respectively). The general decrease of P and K concentration in drought plots was due to the reduction of soil water content, soil and root phosphatase activity and photosynthetic capacity that decreased plant uptake capacity. Warming increased P concentration in Erica multiflora leaves (42%), but decreased it in the stems and leaf litter of Erica multiflora and the leaf litter (33%) of Globularia alypum, thereby demonstrating that warming improved the P retranslocation and allocation from stem to leaves. These results correlate with the increase in photosynthetic capacity and growth of these two dominant shrub species in warming plots. Drought and warming had no significant effects on biomass P accumulation in the period 1999–2005, but drought increased K accumulation in aboveground biomass (10 kg ha−1) in Globularia alypum due to the increase in K concentration in stems. The stoichiometric changes produced by the different responses of the nutrients led to changes in the P/K concentration ratio in Erica multiflora leaves, stems and litter, and in Globularia alypum stems and litter. This may have implications for the nutritional value of these plant species and plant–herbivore relationships. The effects of climate change on P and K concentrations and contents in Mediterranean ecosystems will differ depending on whether the main component of change is drought or warming.  相似文献   

4.
We investigated the effects of warming and drought on C and N concentrations, nitrogen use efficiency (NUE), and C and N accumulation in different ecosystem compartments. We conducted a 6-year (1999–2005) field experiment to simulate the climate conditions projected by IPCC models for the coming decades in a Mediterranean shrubland. We studied the two dominant species, Globularia alypum and Erica multiflora, and an N-fixing species, Dorycnium pentaphyllum, also abundant in this shrubland. Warming (1 °C) decreased N leaf concentrations by 25% and increased N stem concentrations by 40% in G. alypum. Although warming changed the available ammonium in soil in some seasons, it did not increase total soil N contents. Drought (19% average reduction in soil moisture) decreased leaf N concentrations in the two dominant shrub species, E. multiflora and G. alypum by 16% and 19%, respectively, and increased stem N concentrations by 56% and 40%, respectively. Neither warming nor drought changed the leaf N concentrations in the N-fixing species D. pentaphyllum, although warming increased stem N concentration by 9%. In G. alypum, the increase of stem N concentrations contributed to the observed increase of N accumulation in stem biomass in drought treatments with respect to control plots (8 kg N ha−1). Neither warming nor drought changed NUE in the period 1999–2005. Warming increased soil organic C relative to drought. The effects of warming and drought on C and N concentrations, on N accumulation and on leaf/stem N distribution were not the result of dilution or concentration effects produced by changes in biomass accumulation. Other factors such as the changes in soil N availability, photosynthetic capacity, and plant internal C and N remobilization must be involved. These changes which differed depending on the species and the plant tissue show that the climate change projected for the coming decades will have significant effects on the C and N cycle and stoichiometry, with probable implications for ecosystem structure and function, such as changes in plant–herbivore relationships, decomposition rates or community species composition.  相似文献   

5.
Salt marshes are ecosystems subjected to a variety of environmental stresses like high salinity, water deficit, intense radiation or high temperatures. Field measurements were conduced in two halophyte species, Atriplex portulacoides L. and Limoniastrum monopetalum L., in the Reserva Natural do Sapal de Castro Marim, to compare their physiological response, i.e., water potential (ψ), net photosynthetic rate (A), stomatal conductance (gs) under natural conditions. Both species demonstrated marked variations in ψ throughout the year, with very low values in the summer, the period of higher salinity, drought and temperature. Deficit water potential (Δψ = ψmidday − ψpredawn) was lower in the summer than in other seasons in A. portulacoides but not in L. monopetalum. The highest values for A and gs in L. monopetalum were observed in autumn and for A. portulacoides in winter, presenting both lowest values in spring and summer. Amax was particularly high for L. monopetalum than for A. portulacoides in summer and autumn, despite gsmax was similar in both species. Diurnal pattern of A and gs were similar in both species, with higher values in the morning, decreasing throughout the day.  相似文献   

6.
A new approach was used to experimentally dry and warm a Mediterranean shrubland. By means of automatically sliding curtains, the drought period was extended by excluding rain over the two growing seasons (spring and autumn), and passive warming was created by avoiding infra‐red dissipation at night over the whole year. The aim of the study was to test how a future extended drought period and an increase in temperatures could affect the photosynthetic and water use strategies of two co‐occurring Mediterranean shrubs, Erica multiflora and Globularia alypum, which are common species of the dry coastal shrublands. The shoot water potential, leaf gas exchange rates and chlorophyll a fluorescence of plants was monitored seasonally during two years (1999–2001). In addition we measured the photosynthetic response curves to light and CO2 in autumn 2001 and the foliar N concentration and leaf C and N stable isotopes in summer 1999 and 2000. Droughted plants of both shrub species showed lower shoot water potentials, transpiration rates and stomatal conductances than control plants, although there was a high seasonal variability. Drought treatment reduced significantly the overall leaf net photosynthetic rates of E. multiflora, but not of G. alypum. Droughted plants of E. multiflora also showed lower leaf net photosynthetic rates in response to light and CO2 and lower carboxylation efficiency than controls, but there was no significant effect of drought on its overall photosystem II (PSII) photochemical efficiency. Although warming treatment did not affect the leaf net photosynthetic rates of the two species overall the study, it increased significantly the carboxylation efficiency and leaf net photosynthetic rates of G. alypum plants in response to CO2 levels in autumn 2001. In addition, warming treatment increased the potential photochemical efficiency of PSII (Fv/Fm) of both species (but especially of G. alypum) at predawn or midday and mainly in autumn and winter. Thus, the results suggest that drier conditions might decrease the annual productivity of these Mediterranean shrubs, particularly of E. multiflora, and that future warming could alleviate the present low temperature constraints of the photosynthetic performance of the two studied species, but especially of G. alypum, during the colder seasons. Ultimately, drier and warmer conditions in the near future may change the competitive relationship among these species in such Mediterranean ecosystems.  相似文献   

7.
Mediterranean vegetation emits large amounts of terpenes. We aimed to study the effects of the decreases in soil water availability forecast for the next decades by global circulation models and ecophysiological models on the terpene emissions by two widely distributed Mediterranean woody species, Phillyrea latifolia L. and Quercus ilex L. We subjected holm oak forest plots to an experimental soil drought of ca. 20% decrease in soil moisture by partial rainfall exclusion and runoff exclusion. We measured the emission rates throughout the seasons for two years with contrasting precipitation and soil moisture (16.6% average in 2003 vs. 6.4% as average in 2005). Among the detected volatile terpenes, only α-pinene and limonene were present in detectable quantities in all of the studied periods. Total terpene emitted ranged from practically zero (spring 2003) to 3.6 and 58.3 μg/(g dry wt h) (winter 2005 and summer 2003 for P. latifolia and Q. ilex, respectively). A clear seasonality was found in the emission rates (they were the highest in summer in both species) and also in the qualitative composition of the emission mix. Maximum emissions of α-pinene occurred in spring and maximum emissions of limonene in winter. Neither the inter-annual differences in water availability nor the rain exclusion treatment significantly affected the emissions in P. latifolia, but Q. ilex showed by 17% lower emissions during the drier second year of study, 2005, but more than two- and threefold increases with the drought treatment in summer 2003 and in summer 2005, respectively, showing historical accumulated effects. These results, which show increased monoterpene emission under the moderate drought produced by the treatment and decreased emission under the severe second year drought, and a much higher sensitivity to drought in Q. ilex than in P. latifolia, are useful in understanding the behavior of plant volatiles under Mediterranean conditions and in modeling future emission under changing climate conditions. They show that the usage of current models could lead to under- and overestimations of the emission under summer dry conditions, because most current algorithms are based on light and temperature only.  相似文献   

8.
The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant terpenes found in both species were α-pinene and Δ3-carene. β-Pinene and myrcene were also abundant in both species. P. halepensis concentrations were much greater than those of Q. ilex in agreement with the lack of storage in the latter species (15205.60 ± 1140.04 vs. 0.54 ± 0.08 μg g−1 [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total terpene concentrations in both species (54% in P. halepensis and 119% in Q. ilex). The fertilization treatment (addition of either 250 kg N ha−1 or 250 kg P ha−1 or both) had no significant effects on terpene foliar concentrations. The terpene concentrations increased from 0.25 μg g−1 [d.m.] at 30°C to 0.70 μg g−1 [d.m.] at 40°C in Q. ilex (the non-storing species) and from 2,240 μg g−1 [d.m.] at 30°C to 15,621 μg g−1 [d.m.] at 40°C in P. halepensis (the storing species). Both species presented negative relationship between terpene concentrations and relative water contents (RWC). The results of this study show that higher terpene concentrations can be expected in the warmer and drier conditions predicted for the next decades in the Mediterranean region.  相似文献   

9.
The arbuscular mycorrhizal (AM) morphology of three host plant species inoculated with single and mixed fungal culture and the distribution of AM fungal species in roots of the hosts treated with a mixed culture of AM fungi were determined. The aim was to investigate the effect of host plants and AM fungi on AM morphology of coexisting plant species. Noncolonized rooted cuttings of Hedera rhombea (Miq) Bean, Rubus parvifolius L., and Rosa multiflora Thunb. were inoculated with five fungal species as single and mixed culture inocula. The fungal species used were Gigaspora rosea and Scutellospora erythropa, previously isolated from H. rhombea; Acaulospora longula and Glomus etunicatum from R. parvifolius; and Glomus claroideum from both plant species. A few hyphal and arbusculate coils were seen in the mixed culture-inoculated roots of R. parvifolius; all fungal treatments produced this Paris-type AM in H. rhombea and Arum-type AM in R. parvifolius, and R. multiflora indicates that AM morphology is strongly controlled by the identity of the host plants used in this study. AM fungal rDNA was extracted separately from roots of each replicate plant species inoculated with the mixed fungal culture, amplified, cloned, sequenced, and analyzed to determine the AM fungal species and their respective proportions in roots of each plant species. Glomus etunicatum and G. claroideum of the family Glomaceae generally occurred more frequently in R. parvifolius and R. multiflora, which form Arum-types, whereas S. erythropa, of the family Gigasporaceae, was the most frequently detected species in H. rhombea, which produced Paris-type AM. Although the genotype of the plant species used appears to determine the AM morphologies formed, there was preferential association between the hosts and AM fungal inoculants.  相似文献   

10.
Photosynthetic parameters were measured in two invasive weeds, Mikania micrantha and Chromolaena odorata, grown in soil under full, medium, and low irradiance and full, medium, and low water supply. Both species showed significantly higher net photosynthetic rate, quantum yield of PS 2 photochemistry and photochemical quenching coefficient under high than low irradiance. For M. micrantha, low irradiance caused decreased chlorophyll content (Chl), Chl a/b ratio and maximum photochemical efficiency of PS 2 (Fv/Fm), while drought decreased Chl content and Fv/Fm and increased nonphotochemical quenching (NPQ). However, these parameters were much less affected in C. odorata except that Chl content and NPQ slightly increased under drought and high irradiance. High irradiance increased xanthophyll pools in both species, especially M. micrantha under combination with drought.  相似文献   

11.
Aboveground disturbances are common in dynamic riparian environments, and Salix nigra is well adapted with a vigorous resprouting response. Soil moisture stresses are also common, and S. nigra is flood tolerant and drought sensitive. The objective of this study was to quantify nonstructural carbohydrate (NSC) reserves in S. nigra following shoot removal and soil moisture treatments. NSC reserves provide energy for regeneration of shoot tissue until new functional leaves are developed. Three soil moisture treatments: well-watered (W), periodic flooding (F) and drought (D); and three shoot removal treatments: no shoots removed (R0), partial shoot removal (R1), and complete shoot removal (R2) were applied. Plants were harvested when new shoot development was observed (day 13). Statistical significance in the 3 × 3-factorial design was determined in two-factor ANOVA at P < 0.05. Both roots and cuttings were important reservoirs for NSC during resprouting response, with decreases in root (31%) and cutting (14%) biomass in R2 compared to R0. Rapid recovery of photosynthetic surface area (from 15 to 37% of R0) was found in R1. A clear pattern of starch mobilization was found in roots in R0, R1 and R2, with lowest root starch concentration in W, F higher than W, and D higher than F. Shoot starch concentration was lower in F and D compared to W in R0, however, in R1 shoot starch was reduced in W compared to F and D, possibly indicating reduced rates of translocation during soil moisture stress. Evidence of osmotic adjustment was found in roots and shoots with higher total ethanol-soluble carbohydrates (TESC) during soil moisture stress in F and D treatments. Total plant NSC pool was greater in F and D treatments compared to W, and progressively reduced from R0 to R1 to R2. Results indicated negative effects of drought, and to a lesser extent periodic flooding on resprouting response in S. nigra, with implications for reduced survival when exposed to combined stresses of aboveground disturbance and soil moisture.  相似文献   

12.
Porphyra katadae Miura var. hemiphylla Tseng et T. J. Chang, a species distributed around the Liaodong and Shandong Peninsulas of China, produces gametophytes from late winter to early spring. These are monoecious with male and female reproductive tissues in distinct halves or sectors. Vegetative tissues from sectors expected to differentiate into sexual tissue were cultured in the laboratory. Male and female reproductive organs, as well as conchocelis and blades, were differentiated from these tissues. The male and female reproductive tissues were in patches and mixed on the cultured tissue pieces. This was quite different from the wild-type sectored individuals. The F1 conchospore germlings also produced monospores, carposporangia, spermatangia and conchocelis. These carposporangia and spermatangia were in patches and were mixed on the F1 fronds. The results imply that P. katadae var. hemiphylla is possibly sex-differentiated rather than sex-determined. This is the first report of such a dimorphic life history in the genus Porphyra.  相似文献   

13.
Photosynthetic induction times and photoinhibition in relation to simulated sunflecks (sudden increase of irradiance from 20 to 1,500 μmol m−2 s−1) were examined in leaves of co-occurring Fagus lucida (a deciduous tree) and Castanopsis lamontii (an evergreen tree) saplings grown either in a beech forest understory or in an adjacent open site during a late rainy season. Two hypotheses were tested: (1) understory leaves would display faster photosynthetic induction times and greater photoinhibition than open-grown leaves; and (2) evergreen species would have slower photosynthetic induction times and lighter photoinhibition than deciduous species. Times to reach 90% of maximal CO2 assimilation rate (t 90%A ) and stomatal conductance did not differ between species, but showed faster by 3–5 min in open-grown leaves than understory leaves due to higher initial stomatal conductance (g s initial) and induction state 1 min into simulated sunflecks (IS1min) in the former. Our analysis across the published data on photosynthetic induction of 48 broad-leaved woody species again revealed the negative correlations between t 90%A and either g s initial or IS1min, and the similarity of t 90%A and between evergreen and deciduous species. Measurements of maximum PSII photochemical efficiency (F v/F m) indicated that photoinhibition occurred in saplings in any of the growth habitats during sunfleck-induced photosynthetic induction. Despite no interspecific differences in the degree of photoinhibition, understory leaves of both species suffered heavier photoinhibition than open-grown leaves, as indicated by a stronger decrease of F v/F m in the former. Dynamic changes in the quantum yields of PSII photochemistry and ΔpH- and xanthophyll-regulated thermal dissipation and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were functional to resist photoinhibition. However, such photoinhibition, together with stomatal and biochemical limitations, would decrease carbon gain during simulated sunflecks, particularly in understory leaves.  相似文献   

14.
The epistatic interaction of alleles at the VRN-H1 and VRN-H2 loci determines vernalization sensitivity in barley. To validate the current molecular model for the two-locus epistasis, we crossed homozygous vernalization-insensitive plants harboring a predicted “winter type” allele at either VRN-H1 (Dicktoo) or VRN-H2 (Oregon Wolfe Barley Dominant), or at both VRN-H (Calicuchima-sib) loci and measured the flowering time of unvernalized F2 progeny under long-day photoperiod. We assessed whether the spring growth habit of Calicuchima-sib is an exception to the two-locus epistatic model or contains novel “spring” alleles at VRN-H1 (HvBM5A) and/or VRN-H2 (ZCCT-H) by determining allele sequence variants at these loci and their effects relative to growth habit. We found that (a) progeny with predicted “winter type” alleles at both VRN-H1 and VRN-H2 alleles exhibited an extremely delayed flowering (i.e. vernalization-sensitive) phenotype in two out of the three F2 populations, (b) sequence flanking the vernalization critical region of HvBM5A intron 1 likely influences degree of vernalization sensitivity, (c) a winter habit is retained when ZCCT-Ha has been deleted, and (d) the ZCCT-H genes have higher levels of allelic polymorphism than other winterhardiness regulatory genes. Our results validate the model explaining the epistatic interaction of VRN-H2 and VRN-H1 under long-day conditions, demonstrate recovery of vernalization-sensitive progeny from crosses of vernalization-insensitive genotypes, show that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity, and provide molecular markers that are accurate predictors of “winter vs spring type” alleles at the VRN-H loci.  相似文献   

15.
The influence of Phragmites australis on the growth of Zizania latifolia, and the morphological characteristics of both species, were investigated at two nutrient levels. The experiment was carried out over three growing seasons between May 2003 and December 2005. The experimental plot was longitudinally divided into two equal halves, one of which was planted with Zizania latifolia (Zizania zone) and the other one with Phragmites australis (Phragmites zone). Four weeks after transplantation, the plot was again divided horizontally, perpendicular to the previous division, and subject to low (LN) and high nutrient (HN) treatments. Measured growth indices of the two species were more developed in the HN than in the LN treatments. Both species were observed to invade each other’s zone, but Phragmites latifolia seemed to out-compete Zizania latifolia individuals. This was evident from the decrease in below ground biomass of Zizania latifolia in the third growing season and deterioration in above ground organs with time. It was concluded that Phragmites australis out-competes Zizania latifolia due to better developed root and rhizome system.  相似文献   

16.
We studied the effects of experimental warming and drought on the plant biomass of a Mediterranean shrubland. We monitored growth at plant level and biomass accumulation at stand level. The experimentation period stretched over 7 years (1999–2005) and we focused on the two dominant shrub species, Erica multiflora L. and Globularia alypum L. and the tree species Pinus halepensis L. The warming treatment increased shoot elongation in E. multiflora, and the drought treatment reduced shoot elongation in G. alypum. The elongation of P. halepensis remained unaffected under both treatments. The balance between the patterns observed in biomass accumulation for the three studied species in the drought plots (reduction in E. multiflora and P. halepensis and increase in G. alypum) resulted in a trend to reduce 33% the biomass of the drought treatment plots with respect to the untreated plots, which almost doubled their biomass from 1998 to 2005. The results also suggest that under drier conditions larger accumulation of dead biomass may occur at stand level, which combined with higher temperatures, may thus increase fire risk in the Mediterranean area.  相似文献   

17.
Pattanaik B  Roleda MY  Schumann R  Karsten U 《Planta》2008,227(4):907-916
Microcoleus chthonoplastes constitutes one of the dominant microorganisms in intertidal microbial mat communities. In the laboratory, the effects of repeated daily exposure to ultraviolet radiation (16:8 light:dark cycle) was investigated in unicyanobacterial cultures isolated from three different localities (Baltic Sea = WW6; North Sea = STO and Brittany = BRE). Photosynthesis and growth were measured in time series (12–15 days) while UV-absorbing mycosporine-like amino acids (MAAs) and cellular integrity were determined after 12 and 3 days exposure to three radiation treatments [PAR (22 μmol photon m−2 s−1) = P; PAR + UV-A (8 W m−2) = PA; PAR + UV-A + UV-B (0.4 W m−2) = PAB]. Isolate-specific responses to UVR were observed. The proximate response to radiation stress after 1-day treatment showed that isolate WW6 was the most sensitive to UVR. However, repeated exposure to radiation stress indicated that photosynthetic efficiency (F v/F m) of WW6 acclimated to UVR. Conversely, although photosynthesis in STO exhibited lower reduction in F v/F m during the first day, the values declined over time. The BRE isolate was the most tolerant to radiation stress with the lowest reduction in F v/F m sustained over time. While photosynthetic efficiencies of different isolates were able to acclimate to UVR, growth did not. The discrepancy seems to be due to the higher cell density used for photosynthesis compared to the growth measurement. Apparently, the cell density used for photosynthesis was not high enough to offer self-shading protection because cellular damage was also observed in those filaments under UVR. Most likely, the UVR acclimation of photosynthesis reflects predominantly the performance of the surviving cells within the filaments. Different strategies were observed in MAAs synthesis. Total MAAs content in WW6 was not significantly different between all the radiation treatments. In contrast, the additional fluence of UV-A and UV-B significantly increased MAAs synthesis and accumulation in STO while only UV-B fluence significantly increased MAAs content in BRE. Regardless of the dynamic photosynthetic recovery process and potential UV-protective functions of MAAs, cellular investigation showed that UV-B significantly contributed to an increased cell mortality in single filaments. In their natural mat habitat, M. chthonoplastes benefits from closely associated cyanobacteria which are highly UVR-tolerant due to the production of the extracellular UV-sunscreen scytonemin.  相似文献   

18.
Four species belonging to Kickxellales (Kickxellomycotina) isolated from soil of Indonesia are described and illustrated. Two new species of Coemansia, C. asiatica and C. javaensis, were discovered in South Sulawesi and West Java, and two known species of Linderina, L. pennispora and L. macrospora, were discovered in East Kalimantan and South Sulawesi, respectively. These four species are newly added to the Indonesian mycobiota. A technique for inducing sporulation of C. javaensis and L. macrospora by adding substances derived from invertebrates such as aphids, nereids, or cladocerans to culture media is described.  相似文献   

19.
The F 0 and F M level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F V/F M (=(F M − F 0)/F M) have been derived: within each of the three spectra of F V/F M, statistically meaningful variations were detected. Also, at distinct wavelength regions, the F V/F M differed significantly between leaf types. From spectra of F V/F M, excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F V/F M between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F V/F M at these wavelengths. All three leaves exhibited low values of F V/F M around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550–650 nm region, the F V/F M in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C4 species, than in barley, a C3 species. Finally, low values of F V/F M at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F V/F M ratio to derive information on spectral absorption properties of PS I and PS II is discussed.  相似文献   

20.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号