首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factors (FGFs) comprise a large family of developmental and physiological signaling molecules. All FGFs have a high affinity for the glycosaminoglycan heparin and for cell surface heparan sulfate proteoglycans. A large body of biochemical and cellular evidence points to a direct role for heparin/heparan sulfate in the formation of an active FGF/FGF receptor signaling complex. However, until recently there has been no direct demonstration that heparan is required for the biological activity of FGF in a developmental system in vivo. A recent paper by Lin et al.(1) has broken through this barrier to demonstrate that heparan sulfate is essential for FGF function during Drosophila development. The establishment of a role for heparan sulfate in FGFR activation in vivo suggests that tissue-specific differences in the structure of heparan may modulate the activity of FGF. BioEssays 22:108-112, 2000.  相似文献   

2.
Myogenesis in the embryo and the adult mammal consists of a highly organized and regulated sequence of cellular processes to form or repair muscle tissue that include cell proliferation, migration, and differentiation. Data from cell culture and in vivo experiments implicate both FGFs and HGF as critical regulators of these processes. Both factors require heparan sulfate glycosaminoglycans for signaling from their respective receptors. Since syndecans, a family of cell-surface transmembrane heparan sulfate proteoglycans (HSPGs) are implicated in FGF signaling and skeletal muscle differentiation, we examined the expression of syndecans 1-4 in embryonic, fetal, postnatal, and adult muscle tissue, as well as on primary adult muscle fiber cultures. We show that syndecan-1, -3, and -4 are expressed in developing skeletal muscle tissue and that syndecan-3 and -4 expression is highly restricted in adult skeletal muscle to cells retaining myogenic capacity. These two HSPGs appear to be expressed exclusively and universally on quiescent adult satellite cells in adult skeletal muscle tissue, suggesting a role for HSPGs in satellite cell maintenance or activation. Once activated, all satellite cells maintain expression of syndecan-3 and syndecan-4 for at least 96 h, also implicating these HSPGs in muscle regeneration. Inhibition of HSPG sulfation by treatment of intact myofibers with chlorate results in delayed proliferation and altered MyoD expression, demonstrating that heparan sulfate is required for proper progression of the early satellite cell myogenic program. These data suggest that, in addition to providing potentially useful new markers for satellite cells, syndecan-3 and syndecan-4 may play important regulatory roles in satellite cell maintenance, activation, proliferation, and differentiation during skeletal muscle regeneration.  相似文献   

3.
In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1-4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1-9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10-23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.  相似文献   

4.
Binding of heparin/heparan sulfate to fibroblast growth factor receptor 4   总被引:4,自引:0,他引:4  
Fibroblast growth factors (FGFs) are heparin-binding polypeptides that affect the growth, differentiation, and migration of many cell types. FGFs signal by binding and activating cell surface FGF receptors (FGFRs) with intracellular tyrosine kinase domains. The signaling involves ligand-induced receptor dimerization and autophosphorylation, followed by downstream transfer of the signal. The sulfated glycosaminoglycans heparin and heparan sulfate bind both FGFs and FGFRs and enhance FGF signaling by mediating complex formation between the growth factor and receptor components. Whereas the heparin/heparan sulfate structures involved in FGF binding have been studied in some detail, little information has been available on saccharide structures mediating binding to FGFRs. We have performed structural characterization of heparin/heparan sulfate oligosaccharides with affinity toward FGFR4. The binding of heparin oligosaccharides to FGFR4 increased with increasing fragment length, the minimal binding domains being contained within eight monosaccharide units. The FGFR4-binding saccharide domains contained both 2-O-sulfated iduronic acid and 6-O-sulfated N-sulfoglucosamine residues, as shown by experiments with selectively desulfated heparin, compositional disaccharide analysis, and a novel exoenzyme-based sequence analysis of heparan sulfate oligosaccharides. Structurally distinct heparan sulfate octasaccharides differed in binding to FGFR4. Sequence analysis suggested that the affinity of the interaction depended on the number of 6-O-sulfate groups but not on their precise location.  相似文献   

5.
Summary Fibroblast growth factor-7 (FGF-7) and a specific splice variant of the FGF tyrosine kinase receptor family (FGFR2IIIb) constitute a paracrine signaling system from stroma to epithelium. Different effects of the manipulation of cellular heparan sulfates and heparin on activities of FGF-7 relative to FGF-1 in epithelial cells suggest that pericellular heparan sulfates may regulate the activity of FGF-7 by a different mechanism than other FGFs. In this report, we employ the heparan sulfate-binding protein, protamine sulfate, to reversibly block cellular heparan sulfates. Protamine sulfate, which does not bind significantly to FGF-7 or FGFR2IIIb, inhibited FGF-7 activities, but not those of epidermal growth factor. The inhibition was overcome by increasing the concentrations of FGF-7 or heparin. Heparin was essential for binding of FGF-7 to recombinant FGFR2IIIb expressed in insect cells or FGFR2IIIb purified away from cell products. These results suggest that, similar to other FGF polypeptides, heparan sulfate within the pericellular matrix is required for activity of FGF-7. Differences in response to heparin and alterations in the BULK heparan sulfate content of cells likely reflect FGF-specific differences in the cellular repertoire of multivalent heparan sulfate chains required for assembly and activation of the FGF signal transduction complex.  相似文献   

6.
The role of heparin and heparan sulfate in the binding and signaling of fibroblast growth factors (FGFs) has been subject to intense investigation, but the studies have largely been confined to two species (FGF1 and FGF2) of the family with approximately 20 members. We have investigated the structural requirements for heparin/heparan sulfate in binding and activation of FGF8 (splice variant b). We present evidence that the minimal FGF8b-binding saccharide domain encompasses 5-7 monosaccharide units. The N-, 2-O-, and 6-O-sulfate substituents of heparin/heparan sulfate (HS) are all involved in the interaction, preferentially in the form of trisulfated IdoUA(2-OSO(3))-GlcNSO(3)(6-OSO(3)) disaccharide constituents. These structural characteristics resemble those described earlier for FGF1. By contrast, the saccharide structures required for the biological activity of FGF8b differed significantly from those characteristic for FGF1 and FGF2. Experiments with cells lacking active HS indicated that extended >/=14-mer heparin domains were needed to enhance cell proliferation and Erk phosphorylation by FGF8b, whereas in cells stimulated with FGF1 or FGF2 the corresponding responses were achieved by much shorter, 6-8-mer, oligosaccharides. Furthermore, still longer domains were needed to activate FGF8b in cells with "non-optimal" FGF receptor expression. Collectively, our data suggest that the heparin/HS structures enhancing the biological activity of FGFs were influenced by the FGF species involved as well as by the cellular composition of FGF receptors.  相似文献   

7.
BACKGROUND: Many fibroblast growth factor family proteins (FGFs) bind to the heparan sulfate/heparin (HP) subtypes of sulfated glycosaminoglycans (GAGs), and a few have recently been reported to also interact with chondroitin sulfate (CS), another sulfated GAG subtype. METHODS: To gain additional insight into this interaction, we prepared all currently known FGFs (i.e., FGF1-FGF23) and assessed their affinity for HP, CS-B, CS-D and CS-E. In addition, midkine, hepatocyte growth factor and pleiotrophin were studied as other known HP-binding proteins. RESULTS: We found that members of the FGF19 subfamily (i.e., FGF15, 19, 21 and 23) had little or no affinity for HP; all of the other secretable growth factors tested had strong affinities for HP, as was indicated by the finding that their elution from HP-Sepharose columns required 1.0-1.5 M NaCl. We also found that FGF3, 6, 8 and 22 had strong affinities for CS-E, while FGF5 had a moderate affinity for CS-D. The interactions between FGFs and GAGs thus appear to be more diverse than previously understood. GENERAL SIGNIFICANCE: This is noteworthy, as the differential interactions of these growth factors with GAGs may be key determinants of their specific biological activities.  相似文献   

8.
Fibroblast growth factors (FGFs) are a family of nine proteins that bind to three distinct types of cell surface molecules: (i) FGF receptor tyrosine kinases (FGFR-1 through FGFR-4); (ii) a cysteine-rich FGF receptor (CFR); and (iii) heparan sulfate proteoglycans (HSPGs). Signaling by FGFs requires participation of at least two of these receptors: the FGFRs and HSPGs form a signaling complex. The length and sulfation pattern of the heparan sulfate chain determines both the activity of the signaling complex and, in part, the ligand specificity for FGFR-1. Thus, the heparan sulfate proteoglycans are likely to play an essential role in signaling. We have recently identified a role for FGF in limb bud development in vivo. In the chick limb bud, ectopic expression of the 18 kDa form of FGF-2 or FGF-2 fused to an artificial signal peptide at its amino terminus causes skeletal duplications. These data, and the observations that FGF-2 is localized to the subjacent mesoderm and the apical ectodermal ridge in the early developing limb, suggest that FGF-2 plays an important role in limb outgrowth. We propose that FGF-2 is an apical ectodermal ridgederived factor that participates in limb outgrowth and patterning. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Fibroblast growth factors (FGFs) exhibit widespread mitogenic and neurotrophic activities. Nine members of the family are currently known, and FGF-1 and FGF-2 are present in relatively high levels in CNS. FGF-1 is expressed by a subset of neuronal populations, while FGF-2 is expressed by astrocytes. FGF-1 and FGF-2 lack signal peptides and appear to be present mainly in inracellular compartmens. This suggests that the factors may act as initiators of a repair response after injury. Support for this notion comes from observations that FGF-1 and FGF-2 levels are low during critical phases of development, but high in the adult CNS. A family of transmembrane tyrosine kinase receptors (FGFRs) mediates the effects of FGFs. Four different genes coding for FGF receptors are currently known, three of which are expressed in cell type-specific patterns in the CNS The main receptor variants present in this tissue, however, can by themselves not distinguish between FGF-1 and FGF-2. Additional selectivity may be established by interaction of the FGFs and their receptors with select heparan proteoglycans (HSPGs). Therefore, the precise physiological role of FGFs is determined by the combination of cell type-specific patterns of expression of FGFs, FGFRs and HSPGs together with the mechanisms that regulate the extracellular availability of FGFs. 1994 John Wiley & Sons, Inc.  相似文献   

10.
Unique among fibroblast growth factors (FGFs), FGF19, -21, and -23 act in an endocrine fashion to regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis. These FGFs require the presence of Klotho/betaKlotho in their target tissues. Here, we present the crystal structures of FGF19 alone and FGF23 in complex with sucrose octasulfate, a disaccharide chemically related to heparin. The conformation of the heparin-binding region between beta strands 10 and 12 in FGF19 and FGF23 diverges completely from the common conformation adopted by paracrine-acting FGFs. A cleft between this region and the beta1-beta2 loop, the other heparin-binding region, precludes direct interaction between heparin/heparan sulfate and backbone atoms of FGF19/23. This reduces the heparin-binding affinity of these ligands and confers endocrine function. Klotho/betaKlotho have evolved as a compensatory mechanism for the poor ability of heparin/heparan sulfate to promote binding of FGF19, -21, and -23 to their cognate receptors.  相似文献   

11.
The interaction of a large number of extracellular proteins with heparan sulfate (HS) regulates their transport and effector functions, but the degree of molecular specificity underlying protein–polysaccharide binding is still debated. The 15 paracrine fibroblast growth factors (FGFs) are one of the paradigms for this interaction. Here, we measure the binding preferences of six FGFs (FGF3, FGF4, FGF6, FGF10, FGF17, FGF20) for a library of modified heparins, representing structures in HS, and model glycosaminoglycans, using differential scanning fluorimetry. This is complemented by the identification of the lysine residues in the primary and secondary binding sites of the FGFs by a selective labelling approach. Pooling these data with previous sets provides good coverage of the FGF phylogenetic tree, deduced from amino acid sequence alignment. This demonstrates that the selectivity of the FGFs for binding structures in sulfated polysaccharides and the pattern of secondary binding sites on the surface of FGFs follow the phylogenetic relationship of the FGFs, and so are likely to be the result of the natural selection pressures that led to the expansion of the FGF family in the course of the evolution of more complex animal body plans.  相似文献   

12.
Fibroblast growth factors (FGFs) are among the best-studied heparin-binding proteins, and heparan sulfate proteoglycans regulate FGF signalling by direct molecular association with FGF and its tyrosine kinase receptor, FGFR. Two recently determined crystal structures of FGF-FGFR-heparin complexes have provided new structural information on how heparin binds to FGF and FGFR, and lead to different models for receptor dimerisation.  相似文献   

13.
Biosynthesis of heparan sulfate (HS) is strictly regulated to yield products with cell/tissue-specific composition. Interactions between HS and a variety of proteins, including growth factors and morphogens, are essential for embryonic development and for homeostasis in the adult. Fibroblast growth factors (FGFs) and their various receptors (FRs) form ternary complexes with HS, as required for receptor signaling. Libraries of HS-related, radiolabeled oligosaccharides were generated by chemo-enzymatic modification of heparin and tested for affinity to immobilized FR ectodomains in the presence of FGF1 or FGF2. Experiments were designed to enable assessment of N-sulfated 8- and 10-mers with defined numbers of iduronic acid 2-O-sulfate and glucosamine 6-O-sulfate groups. FGF1 and FGF2 were found to require similar oligosaccharides in complex formation with FR1c-3c, FGF2 affording somewhat more efficient oligosaccharide recruitment than FGF1. FR4, contrary to FR1c-3c, bound oligosaccharides at physiological ionic conditions even in the absence of FGFs, and this interaction was further promoted by FGF1 but not by FGF2. In all systems studied, the stability of FGF-oligosaccharide-FR complexes correlated with the overall level of saccharide O-sulfation rather than on the precise distribution of sulfate groups.  相似文献   

14.
FGFs 19, 21, and 23 are hormones that regulate in a Klotho co-receptor-dependent fashion major metabolic processes such as glucose and lipid metabolism (FGF21) and phosphate and vitamin D homeostasis (FGF23). The role of heparan sulfate glycosaminoglycan in the formation of the cell surface signaling complex of endocrine FGFs has remained unclear. Here we show that heparan sulfate is not a component of the signal transduction unit of FGF19 and FGF23. In support of our model, we convert a paracrine FGF into an endocrine ligand by diminishing heparan sulfate-binding affinity of the paracrine FGF and substituting its C-terminal tail for that of an endocrine FGF containing the Klotho co-receptor-binding site to home the ligand into the target tissue. In addition to serving as a proof of concept, the ligand conversion provides a novel strategy for engineering endocrine FGF-like molecules for the treatment of metabolic disorders, including global epidemics such as type 2 diabetes and obesity.  相似文献   

15.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

16.
FGF signals for cell proliferation and migration through different pathways   总被引:9,自引:0,他引:9  
FGFs are pleiotropic growth factors that control cell proliferation, migration and differentiation. However, FGF transduction studies have so far focused primarily on the mitogenic effect of this growth factor family and it has been difficult to assess if the described intracellular signaling pathways are dedicated solely to cell proliferation, or whether they are equally important for the migratory activity often seen in responsive cells. We review here papers in which the migratory effects of this growth factor family were clearly discriminated from proliferative effects. In toto, these studies suggest that cells use different signaling pathways for migration, such as Src and p38 MAP kinase, from those for proliferation, which tend to upregulate the ERKs. Which signaling pathway a cell uses for proliferation or migration appears to depend on many factors, including the structure and the quantity of available FGF trapped in the basal lamina by heparan sulfate co-factors, the disposition of cognate high affinity receptors and the general environment of the cell. Thus the density of the cell population, the state of the cell cycle, the presence of other factors or receptors will modulate the migratory response of cells to FGF.  相似文献   

17.
18.
We have proposed a model in which fibroblast growth factor (FGF) signalling requires the interaction of FGF with at least two FGF receptors, a heparan sulfate proteoglycan (HSPG) and a tyrosine kinase. Since FGF may be a key mediator of skeletal muscle differentiation, we examined the synthesis of glycosaminoglycans in MM14 skeletal muscle myoblasts and their participation in FGF signalling. Proliferating and differentiated MM14 cells exhibit similar levels of HSPG, while differentiated cells exhibit reduced levels of chondroitin sulfate proteoglycans and heparan sulfate chains. HSPGs, including syndecan, present in proliferating cells bind bFGF, while the majority of chondroitin sulfate and heparan sulfate chains do not. Treatment of skeletal muscle cells with chlorate, a reversible inhibitor of glycosaminoglycan sulfation, was used to examine the requirement of sulfated proteoglycans for FGF signalling. Chlorate treatment reduced glycosaminoglycan sulfation by 90% and binding of FGF to high affinity sites by 80%. Chlorate treatment of MM14 myoblasts abrogated the biological activity of acidic, basic, and Kaposi's sarcoma FGFs resulting in terminal differentiation. Chlorate inhibition of FGF signalling was reversed by the simultaneous addition of sodium sulfate or heparin. Further support for a direct role of heparan sulfate proteoglycans in fibroblast growth factor signal transduction was demonstrated by the ability of heparitinase to inhibit basic FGF binding and biological activity. These results suggest that activation of FGF receptors by acidic, basic or Kaposi's sarcoma FGF requires simultaneous binding to a HSPG and the tyrosine kinase receptor. Skeletal muscle differentiation in vivo may be dependent on FGFs, FGF tyrosine kinase receptors, and HSPGs. The regulation of these molecules may then be expected to have important implications for skeletal muscle development and regeneration.  相似文献   

19.
Fibroblast growth factors (FGFs) require heparan sulfate proteoglycans (HSPGs) as cofactors for signaling. The heparan sulfate chains (HS) mediate stable high affinity binding of FGFs to their receptor tyrosine kinases (FR) and may specifically regulate FGF activity. A novel in situ binding assay was developed to examine the ability of HSPGs to promote FGF/FR binding using a soluble FR fusion construct (FR1-AP). This fusion protein probe forms a dimer in solution, simulating the dimerization or oligomerization that is thought to occur at the cell surface physiologically. In frozen sections of human skin, FGF-2 binds to keratinocytes and basement membranes of epidermis and dermal blood vessels. In contrast, in skin preincubated with FGF-2, FR1-AP binds avidly to FGF-2 immobilized on keratinocyte cell surfaces, but fails to bind to basement membranes at the dermo-epidermal junction or dermal microvessels despite the fact that these structures bind large amounts of FGF-2. Apparently, basement membrane and cell surface HSPGs differ in their ability to mediate the assembly of a FGF/FR signaling complex presumably due to structural differences of the heparan sulfate chains.  相似文献   

20.
In the absence of heparan sulfate (HS) on the surface of target cells, or free heparin (HP) in the vicinity of their receptors, fibroblast growth factor (FGF) family members cannot exert their biological activity and are easily damaged by proteolysis. This limits the utility of FGFs in a variety of applications including treatment of surgical, burn, and periodontal tissue wounds, gastric ulcers, segmental bony defects, ligament and spinal cord injury. Here we describe an FGF analog engineered to overcome this limitation by fusing FGF-1 with HS proteoglycan (PG) core protein. The fusion protein (PG-FGF-1), which was expressed in Chinese hamster ovary cells and collected from the conditioned medium, possessed both HS and chondroitin sulfate sugar chains. After fractionation, intact PG-FGF-1 proteins with little affinity to immobilized HP and high-level HS modification, but not their heparitinase or heparinase digests, exerted mitogenic activity independent of exogenous HP toward HS-free Ba/F3 transfectants expressing FGF receptor. Although PG-FGF-1 was resistant to tryptic digestion, its physiological degradation with a combination of heparitinase and trypsin augmented its mitogenic activity toward human endothelial cells. The same treatment abolished the activity of simple FGF-1 protein. By constructing a biologically active proteoglycan-FGF-1 fusion protein, we have demonstrated an approach that may prove effective for engineering not only FGF family members, but other HP-binding molecules as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号