首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Escherichia coli strains carrying the temperature-dependent dnaQ49 allele are strong mutators at 37 degrees C. Since the dnaQ49 gene encodes the epsilon subunit of DNA polymerase III, it is thought that the large number of errors results in part from impaired proofreading activity during DNA replication. We have examined dnaQ49-induced reversion patterns of defined trpA alleles to determine the kinds of errors produced by dnaQ49 at 30 degrees C and 37 degrees C. We found that at 37 degrees C dnaQ49 produced all types of base-pair substitutions in addition to frameshifts with transitions generally occurring more frequently than transversions. This generalized mutator activity is very similar to that displayed in rich medium by mutD5, another mutator allele at the dnaQ locus. However, when dnaQ49 strains were cultured at 30 degrees C, not only were reversion frequencies much lower than at 37 degrees C, but in addition, the spectrum was altered. Transversions became proportionally more prevalent in the reversion spectra at the lower temperature. We suggest the possibility that at 37 degrees C dnaQ49 results in defective proofreading and methyl-directed postreplicative mismatch repair, while at 30 degrees C mismatch repair is fully and proofreading partially restored.  相似文献   

2.
We have previously isolated seven mutants of Escherichia coli which replicate their DNA with increased fidelity. These mutants were isolated as suppressors of the elevated mutability of a mismatch-repair-defective mutL strain. Each mutant was shown to contain a single amino acid substitution in the dnaE gene product, the alpha (i.e., polymerase) subunit of DNA polymerase III holoenzyme responsible for replicating the E. coli chromosome. The mechanism(s) by which these antimutators exert their effect is of interest. Here, we have examined the effects of the antimutator alleles in a mutD5 mutator strain. This strain carries a mutation in the dnaQ gene, which results in defective exonucleolytic proofreading. Our results show that dnaE mutations also confer a strong antimutator phenotype in this background, the effects being generally much greater than those observed previously in the mutL background. The results suggest that the dnaE antimutator alleles can exert their effect independently of exonucleolytic proofreading activity. The large magnitude of the antimutator effects in the mutD5 background can be ascribed, at least in part, to the (additional) restoration of DNA mismatch repair, which is generally impaired in mutD5 strains because of error saturation. The high mutability of mutD5 strains was exploited to isolate a strong new dnaE antimutator allele on the basis of its ability to suppress the high reversion rate of an A.T-->T.A transversion in this background. A model suggesting how the dnaE antimutator alleles might exert their effects in proofreading-proficient and -deficient backgrounds is presented.  相似文献   

3.
The influence of mutations in the 3' to 5' exonucleolytic proofreading epsilon-subunit of Escherichia coli DNA polymerase III on the genetic instabilities of the CGG.CCG and the CTG.CAG repeats that cause human hereditary neurological diseases was investigated. The dnaQ49(ts) and the mutD5 mutations destabilize the CGG.CCG repeats. The distributions of the deletion products indicate that slipped structures containing a small number of repeats in the loop mediate the deletion process. The CTG.CAG repeats were destabilized by the dnaQ49(ts) mutation by a process mediated by long hairpin loop structures (>/=5 repeats). The mutD5 mutator strain stabilized the (CTG.CAG)(175) tract, which contained two interruptions. Since the mutD5 mutator strain has a saturated mismatch repair system, the stabilization is probably an indirect effect of the nonfunctional mismatch repair system in these strains. Shorter uninterrupted tracts expand readily in the mutD5 strain, presumably due to the greater stability of long CTG.CAG tracts (>100 repeats) in this strain. When parallel studies were conducted in minimal medium, where the mutD5 strain is defective in exonucleolytic proofreading but has a functional MMR system, both CTG.CAG and CGG.CCG repeats were destabilized, showing that the proofreading activity is essential for maintaining the integrity of TRS tracts. Thus, we conclude that the expansion and deletion of triplet repeats are enhanced by mutations that reduce the fidelity of replication.  相似文献   

4.
Escherichia coli mutator mutD5 is the most potent mutator known. The mutD5 mutation resides in the dnaQ gene encoding the proofreading exonuclease of DNA polymerase III holoenzyme. It has recently been shown that the extreme mutability of this strain results, in addition to a proofreading defect, from a defect in mutH, L, S-encoded postreplicational DNA mismatch repair. The following measurements of the mismatch-repair capacity of mutD5 cells demonstrate that this mismatch-repair defect is not structural, but transient. mutD5 cells in early log phase are as deficient in mismatch repair as mutL cells, but they become as proficient as wild-type cells in late log phase. Second, arrest of chromosomal replication in a mutD5-dnaA(Ts) strain at a nonpermissive temperature restores mismatch repair, even from the early log phase of growth. Third, transformation of mutD5 strains with multicopy plasmids expressing the mutH or mutL gene restores mismatch repair, even in rapidly growing cells. These observations suggest that the mismatch-repair deficiency of mutD strains results from a saturation of the mutHLS-mismatch-repair system by an excess of primary DNA replication errors due to the proofreading defect.  相似文献   

5.
dnaQ (mutD) encodes the editing exonuclease subunit (epsilon) of DNA polymerase III. Previously described mutations in dnaQ include dominant and recessive mutator alleles as well as leaky temperature-sensitive alleles. We describe the properties of strains bearing null mutations (deletion-substitution alleles) of this gene. Null mutants exhibited a growth defect as well as elevated spontaneous mutation. As a consequence of the poor growth of dnaQ mutants and their high mutation rate, these strains were replaced within single colonies by derivatives carrying an extragenic suppressor mutation that compensated the growth defect but apparently not the mutator effect. Sixteen independently derived suppressors mapped in the vicinity of dnaE, the gene for the polymerization subunit (alpha) of DNA polymerase III, and one suppressor that was sequenced encoded an altered alpha polypeptide. Partially purified DNA polymerase III containing this altered alpha subunit was active in polymerization assays. In addition to their dependence on a suppressor mutation affecting alpha, dnaQ mutants strictly required DNA polymerase I for viability. We argue from these data that in the absence of epsilon, DNA replication falters unless secondary mechanisms, including genetically coded alteration in the intrinsic replication capacity of alpha and increased use of DNA polymerase I, come into play. Thus, epsilon plays a role in DNA replication distinct from its known role in controlling spontaneous mutation frequency.  相似文献   

6.
The Escherichia coli mutT mutator allele produces high frequencies of exclusively A:T-->C:G transversions. This is thought to be caused by a failure to prevent or remove A:G mispairs during DNA replication. The mutD5 mutator allele maps to the dnaQ locus which encodes the epsilon subunit of the DNA polymerase III holoenzyme. This subunit provides 3'-->5' exonuclease, proofreading, activity for removing mispaired nucleotides at the 3' end of the newly synthesized DNA strand. mutD5 has an altered epsilon resulting in reduced levels of proofreading and subsequent high mutation frequencies for all base-pair substitutions. We have analyzed the interaction between mutD5 and mutT-induced A:T-->C:G transversions by measuring reversion frequencies in mutD5 and mutT single mutator strains and mutD5mutT double mutator strains using the well-characterized trpA58 and trpA88 alleles. We find that the double mutator strains produce more A:T-->C:G substitutions than would be expected from simple additivity of the single mutator strains. We interpret this to mean that the two systems, at least in part, do act together to prevent the same mutational intermediate from producing A:T-->C:G transversions. It is estimated that over 90% of the mutT-induced A:G mispairs are corrected by proofreading at the trpA58 site while only about 30% are corrected at trpA88. Reversion frequencies in the mutD5mutT double mutator strains indicate A:G misincorporations occur about 100 x more frequently at trpA58 than at the trpA88 site. Using these and other data we also provide estimations of the fidelity contributions for mutT editing, proofreading and methyl-directed mismatch repair at the two trpA sites for both transversions and the transition that could be scored. In the case of A:T-->C:G transversions, both mutT editing and proofreading make major contributions in error reduction with mismatch repair playing a small or no role at all. For the A:T-->G:C transition, proofreading and mismatch repair were both important in preventing mutations while no contribution was observed for mutT editing.  相似文献   

7.
8.
Summary The nucleotide sequences of the recessivednaQ49 and the dominantmutD5 mutator were determined. ThednaQ49 mutator has a single base substitution in thednaQ gene, thus causing one amino acid change,96Val (GTG)→ Gly (GGG), in the DnaQ protein (ε subunit of DNA polymerase III holoenzyme). ThemutD5 mutator possesses two base substitutions in the same gene, resulting in two amino acid changes,73Leu (TTG)→Trp (TGG) and164Ala (GCA)→Val (GTA), which were designated themutD52 andmutD51 mutations, respectively. Construction of chimaeric genes carrying one or two of these mutations revealed: (1) eithermutD51 ormutD52 alone causes the dominant mutator phenotype when present in a multi-copy plasmid; (2)mutD51, but notmutD52, exerts the dominant mutator phenotype when present in a low-copy plasmid; (3) the dominantmutD51 mutator activity is suppressed by thednaQ49 mutation when both mutations are present in the same gene. Based on these findings, we devised a model for the action of these mutators.  相似文献   

9.
DNA polymerase III holoenzyme is a multiprotein complex responsible for the bulk of chromosomal replication in Escherichia coli and Salmonella typhimurium. The catalytic core of the holoenzyme is an alpha epsilon theta heterotrimer that incorporates both a polymerase subunit (alpha; dnaE) and a proofreading subunit (epsilon; dnaQ). The role of theta is unknown. Here, we describe a null mutation of holE, the gene for theta. A strain carrying this mutation was fully viable and displayed no mutant phenotype. In contrast, a dnaQ null mutant exhibited poor growth, chronic SOS induction, and an elevated spontaneous mutation rate, like dnaQ null mutants of S. typhimurium described previously. The poor growth was suppressible by a mutation affecting alpha which was identical to a suppressor mutation identified in S. typhimurium. A double mutant null for both holE and dnaQ was indistinguishable from the dnaQ single mutant. These results show that the theta subunit is dispensable in both dnaQ+ and mutant dnaQ backgrounds, and that the phenotype of epsilon mutants cannot be explained on the basis of interference with theta function.  相似文献   

10.
The temperature-sensitive DNA polymerase III (Pol III) encoded by the dnaE486 allele confers a spontaneous mutator activity in SOS-induced bacteria that is largely dependent upon DNA polymerase V (Pol V), encoded by umuD, C. This mutator activity is influenced by the defective proof-reading sub-unit of Pol III encoded by the dnaQ905 (mutD5) allele arguing that Pol V is most likely fixing mutations arising from mismatched primer termini produced by Pol III(486). The size of the dnaQ effect is, however, modest leaving open the possibility that Pol V may be responsible for some of the mutator effect by engaging in bursts of processive activity.  相似文献   

11.
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.  相似文献   

12.
Most potent mutators heretofore detected in Escherichia coli are associated with defects in epsilon subunit of DNA polymerase III, encoded by the dnaQ gene. To elucidate the role of the alpha subunit, the catalytic subunit of the polymerase, in maintaining the high fidelity of DNA replication, we isolated a mutator mutant, the mutation (dnaE173) of which resides on the dnaE gene, encoding the alpha subunit. The dnaE173 mutant was unable to grow in salt-free L broth at temperatures exceeding 44.5 degrees C and exhibited an increased frequency of spontaneous mutations, 1,000 to 10,000-fold the wild type level, at permissive temperatures. The mutator effect of dnaE173 mutation is dominant over the wild type allele. These phenotypes are caused by a single base substitution, resulting in one amino acid change, Glu612 (GAA)----Lys(AAA), in the alpha subunit molecule. DNA polymerase III purified from the dnaE173 mutant contained both alpha and epsilon subunits, in a normal molar ratio. We found no differences between wild type and mutant polymerases in the Vmax, thermolabilities, and salt sensitivities. However, the apparent Km for the substrate nucleotide of the mutant polymerase was 1/6 of that determined with the wild type polymerase. Although the mutant polymerase retained a normal level of 3'----5' exonuclease activity, the proofreading capacity determined by "turnover assay" was significantly lower in the mutant polymerase, as compared with findings in the normal enzyme. It seems likely that the enhanced mutability in the dnaE173 strain results from, at least in part, a defect in the editing function of DNA polymerase III, and further suggests that a portion of the alpha subunit in which the amino acid change resides may be important for the proper setting of the two subunits at the replication fork so as to facilitate efficient editing during the DNA replication.  相似文献   

13.
The strong mutator mutation dnaE173 which causes an amino-acid substitution in the alpha subunit of DNA polymerase III is unique in its ability to induce sequence-substitution mutations. We showed previously that multiple biochemical properties of DNA polymerase III holoenzyme of Escherichia coli are simultaneously affected by the dnaE173 mutation. These effects include a severely reduced proofreading capacity, an increased resistance to replication-pausing on the template DNA, a capability to readily promote strand-displacement DNA synthesis, a reduced rate of DNA chain elongation, and an ability to catalyze highly processive DNA synthesis in the absence of the beta-clamp subunit. Here we show that, in contrast to distributive DNA synthesis exhibited by wild-type alpha subunit, the dnaE173 mutant form of alpha subunit catalyzes highly processive DNA chain elongation without the aid of the beta-clamp. More surprisingly, the dnaE173 alpha subunit appeared to form a stable complex with primer/template DNA, while no such affinity was detected with wild-type alpha subunit. We consider that the highly increased affinity of alpha subunit for primer/template DNA is the basis for the pleiotropic effects of the dnaE173 mutation on DNA polymerase III, and provides a clue to the molecular mechanisms underlying sequence substitution mutagenesis.  相似文献   

14.
We have introduced a mutD5 mutation (which results in defective 3'-5'-exonuclease activity of the epsilon proofreading subunit of DNA polymerase III holoenzyme) into excision-defective Escherichia coli strains with varying SOS responses to UV light. MutD5 increased the spontaneous mutation frequency in all strains tested, including recA430, umuC122::Tn5, and umuC36 derivatives. It had no effect on UV mutability or immutability in any strain or on misincorporation revealed by delayed photoreversal in UV-irradiated umuC36, umuC122::Tn5, or recA430 bacteria. It is concluded that the epsilon proofreading subunit of DNA polymerase III holoenzyme is excluded, inhibited, or inoperative during misincorporation and mutagenesis after UV.  相似文献   

15.
The mutD (dnaQ) gene of Escherichia coli codes for the proofreading activity of DNA polymerase III. The very strong mutator phenotype of mutD5 strains seems to indicate that their postreplicational mismatch repair activity is also impaired. We show that the mismatch repair system of mutD5 strains is functional but saturated, presumably by the excess of DNA replication errors, since it is recovered by inhibiting chromosomal DNA replication. This recovery depends on de novo protein synthesis.  相似文献   

16.
The function of the theta subunit of Escherichia coli DNA polymerase III holoenzyme is not well established. theta is a tightly bound component of the DNA polymerase III core, which contains the alpha subunit (polymerase), the epsilon subunit (3'-->5' exonuclease), and the theta subunit, in the linear order alpha-epsilon-theta. Previous studies have shown that the theta subunit is not essential, as strains carrying a deletion of the holE gene (which encodes theta) proved fully viable. No significant phenotypic effects of the holE deletion could be detected, as the strain displayed normal cell health, morphology, and mutation rates. On the other hand, in vitro experiments have indicated the efficiency of the 3'-exonuclease activity of epsilon to be modestly enhanced by the presence of theta. Here, we report a series of genetic experiments that suggest that theta has a stabilizing role for the epsilon proofreading subunit. The observations include (i) defined DeltaholE mutator effects in mismatch-repair-defective mutL backgrounds, (ii) strong DeltaholE mutator effects in certain proofreading-impaired dnaQ strains, and (iii) yeast two- and three-hybrid experiments demonstrating enhancement of alpha-epsilon interactions by the presence of theta. theta appears conserved among gram-negative organisms which have an exonuclease subunit that exists as a separate protein (i.e., not part of the polymerase polypeptide), and the presence of theta might be uniquely beneficial in those instances where the proofreading 3'-exonuclease is not part of the polymerase polypeptide.  相似文献   

17.
Summary The dnaQ (mutD) gene product which encodes the -subunit of the DNA polymerase III holoenzyme has a central role in controlling the fidelity of DNA replication because both mutD5 and dnaQ49 mutations severely decrease the 3–5 exonucleolytic editing capacity.It is shown in this paper that more than 95% of all anaQ49-induced base pair substitutions are transversions of the types G:C-T:A and A:T-T:A. Not only is this unusual mutational specificity precisely that observed recently for a number of potent carcinogens such as benzo(a) pyrene diolepoxide (BPDE) and aflatoxin B1 (AFB1), which are dependent on the SOS system to mutagenize bacteria, but it is also seen for the constitutively expressed SOS mutator activity in E. coli tif-1 strains as well as for the SOS mutator activity mediated gap filling of apurinic sites. Because the G:C-T:A and A:T-T:A transversions can either result from the insertion of an adenine across from apurinic sites or arise due to the incorporation of syn-adenine opposite a purine base, we postulate that the DNA polymerase III holoenzyme also has a reduced discrimination ability in a dnaQ49 background.The introduction of a lexA (Ind-) allele, which prevents the expression of SOS functions, led to a significant reduction in the dnaQ49-caused mutator effect.Both, the mutational specificity observed and the partial lexA + dependence of the mutator effect provoke a reanalysis of the hypothesis that the DNA polymerase III holoenzyme can be converted into the postulated but until now unidentified SOS polymerase.  相似文献   

18.
The mutD (dnaQ) gene of Escherichia coli codes for the epsilon subunit of the DNA polymerase III holoenzyme which is involved in 3'----5' exonuclease proofreading activity. We determined the mutational specificity of the mutator allele, mutD5, in the lacI gene of E. coli. The mutD5 mutation preferentially produces single base substitutions as judged from the enhanced fraction of lacI nonsense mutations and the spectrum of sequenced dominant lacI (lacId) and constitutive lacO (lacOc) mutations which were predominantly (69/71) single nucleotide substitutions. The distribution of amber lacI and sequenced lacId mutations revealed that transitions occur more frequently than transversions. A . T----G . C and G . C----A . T transitions were equally frequent and, with one major exception, evenly distributed among numerous sites. Among the transversions, A . T----T . A events were the most common, A . T----C . G substitutions were rare, and G . C----C . G changes were not detected. Transversions were unequally distributed among a limited number of sites with obvious hotspots. All 11 sequenced transversions had a consensus neighboring sequence of 5'-C-C-(mutated G or A)-C-3'. Although no large deletions or complex mutational events were recovered, sequencing revealed that mutD5 induced single nucleotide deletions within consecutive G X C sequences. An extraordinary A . T----G . C transition hotspot occurred at nucleotide position +6 in the lac operator region; the mutD5 mutation frequency of this single base pair was calculated to be 1.2 X 10(-3).  相似文献   

19.
To better understand the mechanisms of SOS mutagenesis in the bacterium Escherichia coli, we have undertaken a genetic analysis of the SOS mutator activity. The SOS mutator activity results from constitutive expression of the SOS system in strains carrying a constitutively activated RecA protein (RecA730). We show that the SOS mutator activity is not enhanced in strains containing deficiencies in the uvrABC nucleotide excision-repair system or the xth and nfo base excision-repair systems. Further, recA730-induced errors are shown to be corrected by the MutHLS-dependent mismatch-repair system as efficiently as the corresponding errors in the rec+ background. These results suggest that the SOS mutator activity does not reflect mutagenesis at so-called cryptic lesions but instead represents an amplification of normally occurring DNA polymerase errors. Analysis of the base-pair-substitution mutations induced by recA730 in a mismatch repair-deficient background shows that both transition and transversion errors are amplified, although the effect is much larger for transversions than for transitions. Analysis of the mutator effect in various dnaE strains, including dnaE antimutators, as well as in proofreading-deficient dnaQ (mutD) strains suggests that in recA730 strains, two types of replication errors occur in parallel: (i) normal replication errors that are subject to both exonucleolytic proofreading and dnaE antimutator effects and (ii) recA730-specific errors that are not susceptible to either proofreading or dnaE antimutator effects. The combined data are consistent with a model suggesting that in recA730 cells error-prone replication complexes are assembled at sites where DNA polymerization is temporarily stalled, most likely when a normal polymerase insertion error has created a poorly extendable terminal mismatch. The modified complex forces extension of the mismatch largely at the exclusion of proofreading and polymerase dissociation pathways. SOS mutagenesis targeted at replication-blocking DNA lesions likely proceeds in the same manner.  相似文献   

20.
We have introduced a mutD5 mutation (which results in defective 3′–5′-exonuclease activity of the ϵ proofreading subunit of DNA polymerase III holoenzyme) into excision-defective Escherichia coli strains with varying SOS responses to UV light. MutD5 increased the spontaneous mutation frequency in all strains tested, including recA430, umuC122::Tn5, and umuC36 derivatives. It had no effect of UV mutability or immutability in any strain or on misincorporation revealed by delayed photoreversal in UV-irradiated umuC36, umuC122::Tn5, or recA430 bacteria. It is concluded that the ϵ proofreading subunit of DNA polymerase III holoenzyme is excluded, inhibited, or inoperative during misincorporation and mutagenesis after UV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号