首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
ZNF191, a new human zinc finger protein, probably relates to some hereditary diseases and cancers. To obtain structural information of zinc finger domain a convenient method for obtaining milligram quantities of each zinc finger peptide of ZNF191 is necessary. Here, we report an Escherichia coli expression system for rapid and high-level expression of zinc finger 3 and zinc finger 4 of ZNF191. The gene of zinc finger 3 or zinc finger 4 was cloned into pET31b vector to allow expression of single zinc finger peptide as a ketosteroid isomerase (KSI) fusion protein. The KSI-single zinc finger fusion protein was overexpressed in the form of inclusion body, which can be purified by washing several times using buffer solutions, and then be cleaved directly by cyanogen bromide to release single zinc finger peptide. The more than 20mg/L yield of single zinc finger peptide was achieved with more than 95% purity by using YM ultrafiltration membranes. Circular dichroism spectra of these two single zinc finger peptides titrated with Zn(2+) ions demonstrate that they have different secondary structures.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Li J  Chen X  Yang H  Wang S  Guo B  Yu L  Wang Z  Fu J 《Experimental cell research》2006,312(20):3990-3998
Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191(+/-) mice are normal and fertile. Homozygous Zfp191(-/-) embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191(-/-) and Zfp191(+/-) embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191(-/-) cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191(+/-) intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation.  相似文献   

15.
BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic progenitors as well as in differentiated glia. During embryonic development of the murine cerebral cortex, HOF expression is restricted to the hippocampal subdivision. Expression coincides with early differentiation of presumptive CA1 and CA3 pyramidal neurons and dentate gyrus granule cells, with a sharp decline in expression at the CA1/subicular border. By using bromodeoxyuridine labeling and immunohistochemistry, we show that HOF expression coincides with immature non-dividing cells and is down-regulated in differentiated cells, suggesting a role for HOF in hippocampal neurogenesis. Consistent with the postulated role of the POZ domain as a site for protein-protein interactions, both HOF isoforms are able to dimerize. The HOF zinc fingers bind specifically to the binding site for the related promyelocytic leukemia zinc finger protein as well as to a newly identified DNA sequence.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号