首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to examine the relationship between RNA polymerase I and ornithine decarboxylase (ODC), three lines of experiments were performed, with the following results. The glucocorticoid-induced increase of RNA polymerase I in rat liver nuclei was not abolished by administration of inhibitors of ODC synthesis and activity, namely 1,3-diaminopropane and 2-difluoromethylornithine respectively. Anti-ODC antibody did not cross-react with RNA polymerase I solubilized from rat liver nucleoli, indicating the absence of a common protein sequence in these enzymes. The ODC preparation which was treated with transglutaminase in the presence of putrescine could not stimulate the activity of RNA polymerase I in nuclei of liver and prostate. All these results suggest that the increases in ODC protein or activity are not a prerequisite to the increase in RNA polymerase I after hormonal or physiological stimuli, but rather that the increases in both enzymes are separate responses to the primary stimuli.  相似文献   

2.
Ornithine decarboxylase (ODC; EC 4.1.1.17), transglutaminase (EC 2.3.2.13), diamine oxidase (DAO; EC 1.4.3.6) and total di- and poly-amines were studied in rat liver and kidney cortex throughout pregnancy. In liver, ODC activity exhibited two major peaks (4.5-5 times the control activities) on days 15 and 17. Also putrescine and spermidine increased biphasically (3-4-fold), but no variation in spermine content was observed. Transglutaminase activity showed slight variations only near the end of gestation. In kidney, ODC activity did not fluctuate significantly during pregnancy, whereas both transglutaminase activity and putrescine content showed three major increases, in very early, middle and late pregnancy. No significant variations in spermidine and spermine were observed. In both organs, DAO activity, very low or undetectable until day 10, dramatically increased (10- and 20-fold in kidney and liver respectively) in the second half of pregnancy, reaching maxima on days 16-17 and 19. The results obtained for transglutaminase, ODC and total di- and poly-amines are interpreted on the basis of hyperplastic and hypertrophic events in the liver and kidney respectively. The behaviour of DAO suggests that the enzyme plays an important role in the control of intracellular diamine concentration.  相似文献   

3.
Ornithine decarboxylase (ODC; EC 4.1.1.17) could be induced in primary cultured hepatocytes of the frog, Xenopus laevis, by a hypotonic treatment. Addition of 10 mM putrescine caused a rapid decay of preinduced ODC after a lag period of 30 min. The putrescine-induced ODC decay was faster than the ODC decay in the presence of cycloheximide. Simultaneous addition of cycloheximide blocked the putrescine-induced acceleration of ODC decay, indicating an involvement of protein synthesis. Addition of putrescine to normal medium caused complete loss of ODC activity in 2 h and then ODC-inhibitory activity appeared and progressively increased. The inhibitory factor was non-dialysable and temperature-sensitive and showed a time-independent and stoichiometric pattern of ODC inhibition. On the basis of these observations the inhibitory factor was identified as ODC antizyme. These results indicated that in frog hepatocytes, like in mammalian cells and tissues, ODC is under negative feedback regulation mediated by antizyme.  相似文献   

4.
Changes in both synthesis rate and degradation rate of ornithine decarboxylase (ODC) were pursued in primary cultures of adult rat hepatocytes during the process of ODC induction caused by asparagine and glucagon and also during the process of rapid ODC decay caused by putrescine. The synthesis rate of ODC was determined by [35S]methionine incorporation into the enzyme, which was separated afterwards by immunoprecipitation and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The degradation rate of ODC was determined by following the decay of prelabeled ODC. The enzyme induction caused by asparagine (10 mM) and glucagon (1 microM) was due both to an increase in the synthesis rate and to a decrease in the degradation rate. Addition of 10 mM putrescine caused a rapid decay of ODC activity, which was faster than ODC decay in the presence of cycloheximide. This rapid decay in ODC activity was accompanied by slightly slower decay in ODC protein, which was due both to partial suppression of ODC synthesis and to several fold acceleration of ODC degradation.  相似文献   

5.
Calcium ions are crucial for expression of transglutaminase activity. Although lanthanides have been reported to substitute for calcium in a variety of protein functions, they did not replace the calcium requirement during transglutaminase activity measurements. Furthermore, lanthanides strongly inhibited purified liver transglutaminase activity using either casein or fibrinogen as substrates. Terbium (III) inhibition of transglutaminase-catalyzed putrescine incorporation into casein was not reversed by the presence of 10–200 fold molar excess of calcium ions (Ki for Tb(III)=60 µM). Conformational changes in purified liver transglutaminase upon Tb(III) binding were evident from a biphasic effect of Tb(III) on transglutaminase binding to fibrin. Low concentrations of Tb(III) (1 µM to 10 µM inhibited the binding of transglutaminase to fibrin, whereas higher concentrations (20 µM to 100 µM promoted binding. Conformational changes in purified liver transglutaminase consequent to Tb(III) binding were also demonstrated by fluorescence spectroscopy due to Forster energy transfer. Fluorescence emission was stable to the presence of 200 mM NaCl and 100 mM CaCl2 only partially quenched emission. Purified liver transglutaminase strongly bound to Tb(III)-Chelating Sepharose beads and binding could not be disrupted by 100 mM CaCl2 solution. Our data suggest that Tb(III)-induced conformational changes in transglutaminase are responsible for the observed effects on enzyme structure and function. The potential applications of Tb(III)-transglutaminase interactions in elucidating the structure-function relationships of liver transglutaminase are discussed.  相似文献   

6.
Ornithine decarboxylase (ODC)mRNA associated with free polysomes of rat liver was translated in a reticulocyte lysate cell-free system. Newly synthesized ODC protein was identified by specific immunoprecipitation, molecular size as determined by polyacrylamide gel electrophoresis with sodium dodecyl sulfate, and competition by excess unlabeled ODC in the immunoprecipitation. A single injection of thioacetamide was found to cause several fold increases in both immunotitratable ODC protein and polysomal ODC-mRNA activity, while it provoked a much larger increase in ODC activity in rat liver. The results indicate that the induction of hepatic ODC activity by thioacetamide treatment is due not only to an increase in the activity of polysomal ODC-mRNA but also to a translational and/or posttranslational control.  相似文献   

7.
The activity of transglutaminase was characterized in the rat brain. In adults, comparable levels of transglutaminase activity are present in all brain regions examined. The activity is present in all subcellular fractions, as studied by differential centrifugation, but the soluble fraction contains the highest specific activity. The endogenous activity (enzyme activity assayed in the absence of the exogenous substrate casein) is very low in all subcellular fractions, except in the synaptosomal fraction where its highest levels are about 40-60% of the activity assayed in the presence of casein. Furthermore, enzyme activity is present on the external surface of synaptosomes. In the soluble fraction, maximal activity can be detected between pH values of 9 and 10 when assayed in the presence of 5 mM CaCl2 (with half-maximal activity requiring 0.75 mM CaCl2) and 0.4 mM putrescine (with an apparent Km for putrescine of 0.1 mM). The activity can be partially inhibited by ZnCl2 (with an IC50 of 4.5 mM) and by AlCl3 (with an IC50 of 5.1 mM). In the cerebellum, where the full span of neuronal development can be studied after birth, the highest specific activity is observed just after birth, thereafter the activity starts to decline and by 14 days, after a reduction of about 65%, it reaches levels observed throughout life.  相似文献   

8.
The effect of two putrescine analogs were studied on hepatic polyamine synthesis and cell proliferation, both of which were stimulated by food intake. Trans-1, 4-diamino-2-butene (diaminobutene), which is a potent competitive inhibitor of ornithine decarboxylase [EC 4.1.1.17] (ODC), repressed the induction of ODC and effectively inhibited the accumulation of putrescine in rat liver which was induced by the feeding of dietary protein. Unexpectedly, diaminobutene did not suppress DNA synthesis and mitotic activity in rat liver, suggesting that it can mimic the role of putrescine in cell proliferation. 1,3-Diaminopropane effectively repressed the induction of ODC caused by food intake and also suppressed DNA synthesis and mitotic activity without affecting the accumulation of RNA or protein. The suppression of mitotic activity by 1,3-diaminopropane was reversed by a single injection of putrescine, spermidine, spermine, or diaminobutene. It was concluded that rapid accumulation of polyamines, especially putrescine, was a prerequisite for the later enhancement of DNA synthesis and cell proliferation in rat liver caused by food intake.  相似文献   

9.
Summary The effect of several methylputrescines on the activity of insulin-induced ornithine decarboxylase (ODC) was examined in H-35 hepatoma cells. The induction involved both protein and m-RNA synthesis. Actinomycin D inhibited ODC activity when given up to 1 h after insulin treatment. When added to the medium 2 h or 3 h after the insulin, the activity was increased 100% and 80% respectively. Insulin-induced ODC from H-35 cells had a biphasic half-life, a shorter one of 46 min and a longer one of 90 min.1-Methylputrescine and 2-methylputrescine were found to be competitive inhibitors of the ODC from H-35 cells with Ki values of 2.8 and 0.1 mM respectively. Putrescine itself was found to have a Ki = 2.4 mM. N-Methylputrescine was a very poor inhibitor of the cell free ODC while 1,4-dimethylputrescine did not show any inhibitory effect. When cellular ODC activity was measured, the four methylputrescines assayed as well as putrescine entirely abolished its activity in the H-35 cells when given at a 1 mM concentration together with insulin. 1-Methylputrescine and 1,4-dimethylputrescine abolished 60% of the activity at a 0.1 µM concentration. All the methylputrescines given at 0.1 mM concentrations decreased the putrescine content of the stimulated cells to the levels found in quiescent cells, but only 1-methyl and 2-methylputrescines decreased spermidine and spermine content. 1,4-Dimethyl and 1-methylputrescines showed a strong inhibition of ODC synthesis, while the other diamines were less inhibitory. At concentrations that abolished ODC activity, 1,4-dimethylputrescine decreased 70% of the total immunoreactive ODC bands, while 1-methyl and 2-methylputrescine decreased them by 50%, and N-methylputrescine and putrescine decreased them by 20%. The lack of decrease in immuno-reactive ODC with the latter two compounds was mainly due to the appearance of immunoreactive degradation products of ODC of low molecular weight. Putrescine and N-methylputrescine affected protein synthesis to a small extent in stimulated cells, while 1-methylputrescine decreased it to the level of non-stimulated cells. Insulin (1 µM concentration) stimulated DNA synthesis in the cells, and this stimulation was doubled in the presence of 2-methylputrescine or putrescine. It can be concluded that, among the methylputrescines assayed, 2-methylputrescine was the best inhibitor of cell-free ODC activity, while 1,4-dimethylputrescine and 1-methylputrescine were the best inhibitors of cellular ODC activity.Abbreviations ODC Ornithine Decarboxylase - TLC Thin Layer Chromatography - DNEM Dulbecco's Modified Essential Medium - PBS Phosphate Buffered saline - PEG Polyethyleneglycol  相似文献   

10.
We recently presented evidence that the reversible opening of the blood-brain barrier (BBB) by the infusion of 1.6 M mannitol into the rat internal carotid artery is mediated by a rapid stimulation of ornithine decarboxylase (ODC) activity and putrescine synthesis in cerebral capillaries. We have now investigated this hypothesis further, using isolated rat cerebral capillaries as an in vitro model of the BBB. The ODC activity of cerebral capillary preparations was enriched up to 15-fold over that of the cerebral homogenate. Hyperosmolal mannitol in physiological buffer evoked a rapid (less than 15 s), concentration- and time-dependent increase in capillary ODC activity and an accumulation of putrescine and spermidine which was blocked by the specific ODC inhibitor, alpha-difluoromethylornithine (DFMO, 10 mM). Mannitol (1 M), as well as 2 M urea, evoked a two- to fivefold increase in the temperature-sensitive influx of 45Ca2+ and uptake of horseradish peroxidase (HRP) and 2-deoxy-D-[1-3H]glucose (DG), but not alpha-[1-14C]aminoisobutyrate, during a 2-min incubation. DFMO (10 mM) abolished 1 M mannitol-mediated stimulation of 45Ca2+ influx and uptake of HRP and DG, whereas 1 mM putrescine replenished capillary polyamines and reversed the DFMO effects. Mannitol (1 M)-induced stimulation of ODC activity and membrane transport processes was Ca2+-dependent and verapamil- and nisoldipine-sensitive. Phorbol myristate acetate (PMA, 10 nM), a protein kinase C activator, also evoked a two- to threefold stimulation of 45Ca2+ transport and HRP and DG uptake. This PMA effect was abolished by DFMO, suggesting involvement of rapid, ODC-controlled polyamine synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Treatment of EL-4 lymphoma cells with tetradecanoylphorbol-acetate (TPA), a well-known activator of protein kinase C, induces the production of the T cell growth factor interleukin-2 (IL-2) and the expression of IL-2-specific mRNA within 4-8 h. This system is an ideal model for studies on the induction of a differentiated function in a homogeneous lymphoid cell population by a defined signal. TPA induces also an increase of ornithine decarboxylase (ODC) activity and elevates the intracellular concentrations of putrescine and polyamines within 4-8 h. A similar increase of intracellular putrescine and polyamine concentrations can be achieved by administration of 2 mM putrescine to the culture medium. However, putrescine cannot induce the production of IL-2 in the absence of TPA and cannot reconstitute the IL-2 production in cultures with PGE2 or cyclosporine A, i.e., two well-known immunosuppressive substances which inhibit ODC activity. Putrescine has rather a counter-regulatory effect as concluded from the observation that the TPA-induced TCGF production and IL-2-specific mRNA expression are augmented (superinduced) by the ODC inhibitor D,L-alpha-difluoromethylornithine (DFMO) and again suppressed after the administration of putrescine or polyamines to DFMO-treated cultures. The glycolytic activity, general protein synthesis [( 3H]leucine incorporation), and the cell cycle progression from G2/M to G1, in contrast, are inhibited by DFMO and reconstituted by putrescine. This demonstrates that the cells are able to sacrifice to a large extent several vital functions including their general protein synthesis and to devote themselves at the same time to a fulminant production of their functionally most relevant protein IL-2. This process is downregulated by ODC and its product putrescine. A correlation between increased IL-2 production and accumulation of cells in the G2/M phase was also observed in cultures treated with hydroxyurea or with a combination of amethopterin and adenosine.  相似文献   

12.
13.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

14.
Exogenous diamines and polyamines added to rat hepatoma (HTC) cells in culture rapidly decrease ornithine decarboxylase (ODC) activity. Previous evidence has suggested that these amines set either at the level of blocking new enzyme synthesis or by the induction of a non-competitive protein inhibitor, termed antizyme, which complexes with ODC to form an inactive complex. Wth the use of HMOA cells, a recently cloned rat hepatoma cell line that has a greatly stabilized ODC, it has been possible to demonstrate that 10(-5) M of exogenous putrescine blocks the increase in ODC activity, but unlike in the parent HTC cell line, without induction of the antizyme or formation of any inactive ODC-antizyme complex. However, complete blockade of ODC at 10(-2) M putrescine is effected by induction of antizyme and formation of the ODC-antizyme complex, as now evidenced by the isolation of the active enzyme and antizyme components after Sephadex column chromatography in the presence of 250 mM NaCl. These findings indicate clearly that two polyamine-regulatory mechanisms for ODC exist and are separable in this cell line.  相似文献   

15.
Nuclei and nucleoli isolated from calf liver contain acid-precipitable putrescine, spermidine and spermine conjugates. The polyamines are released upon peptide bond hydrolysis. All of the nuclear putrescine conjugate and a major portion of the polyamine conjugates are localized within the nucleolus. Nuclei and nucleoli also contain, in proportions consistent with the nucleolar/nuclear protein ratio, the putative conjugating enzyme, transglutaminase, as well as amine acceptor substrates to which radiolabeled putrescine can be conjugated by endogenous enzyme. Extraction of the isolated organelles with saline solutions of increasing ionic strength showed a differential distribution of the polyamine derivatives: all the covalently linked putrescine was associated with the less soluble components of the chromatin residue, while the spermidine and spermine conjugates were associated with several salt-extractable protein fractions as well as tightly bound to the chromatin pellet. Mono-gamma-glutamyl putrescine was detected after proteolytic digestion of the 600 mM NaCl fraction, further suggesting the enzymatic action of transglutaminase(s) in the conjugation process.  相似文献   

16.
Antizyme inhibitor was highly purified from rat liver by using affinity chromatography. It has some structural resemblance to ornithine decarboxylase (ODC), as judged from Mr, immunoreactivity and reversible binding with antizyme. However, unlike hepatic amounts of ODC and ODC-antizyme complex, that of antizyme inhibitor did not show much fluctuation upon putrescine treatment, whereas it decreased as rapidly as ODC decay in the presence of cycloheximide. These results suggested that antizyme inhibitor is an independent regulatory protein rather than a derivative of ODC. Changes in hepatic amounts of antizyme inhibitor, antizyme and ODC upon feeding suggested that antizyme inhibitor may play a role in ODC regulation by trapping antizyme and thereby suppressing ODC degradation. A monoclonal antibody to rat liver antizyme inhibitor was obtained. This antibody was shown to be utilizable for a simple assay of antizyme-inhibitor activity in tissue extracts.  相似文献   

17.
Guinea pig liver transglutaminase has been used to incorporate putrescine into horse heart cytochrome c. The native protein showed essentially no incorporation, while ethanol-denatured cytochrome c incorporated almost 1 mol putrescine per mol protein. No increase in this level of modification was obtained when maleylated cytochrome c and the tryptic peptides of cytochrome c were used as substrates. Analysis of the modified ethanol-denatured cytochrome c by tryptic cleavage and peptide isolation showed that glutamine-42 of the intact protein is the site of incorporation of radioactively labelled putrescine. Ethanol-denatured cytochrome c that was specifically modified at glutamine-42 by incorporated of putrescine could be readily renatured. The renatured modified protein showed reactivity with cytochrome c oxidase comparable to that of the original native protein.  相似文献   

18.
1. When injected i.p., sodium selenite promoted a marked increase of rat liver ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) activities; when administered with the diet for 6 weeks, a less marked increase in liver ODC was observed, whereas SAMDC was not significantly changed. 2. Protein synthesis was involved in the observed modifications. The rate of ODC inactivation was also changed. 3. ODC increase was accompanied by an enhanced putrescine concentration in liver. 4. A marked increase of ODC, accompanied by an enhancement of putrescine, was promoted by selenite (i.p.) also in chicken liver, together with an enhancement of glutathione concentration. Spermidine acetyltransferase (SAT) was also increased. 5. In the bursa of Fabricius, SAT activity was also increased, whereas ODC was decreased. However the expected modifications in polyamine concentration were not observed. 6. Decrease of ODC activity in the bursa was not due to an antizyme. 7. In vitro, selenite concentrations known to inhibit cell proliferation (greater than 1 microgram/ml) inhibited both ODC and SAT activities; at lower concentration, SAT activity was enhanced.  相似文献   

19.
Bovine aortic endothelial cells contain Ca2+-dependent tissue-type transglutaminase. Its activity in these cells was high, with apparent Km and Vmax. values with respect to putrescine of 0.203 mM and 18.5 nmol/min per mg of protein, and its activity was inhibited by the three competitive inhibitors dansylcadaverine, spermine and methylamine. The molecular mass of endothelial cell transglutaminase estimated by gel filtration chromatography was 88 kDa and it was immunoprecipitated by rabbit monospecific antiserum raised against rat liver transglutaminase. Its enzymic activity rose when the cell cultures reached confluence, and was further increased when their proliferation was arrested (synchronized at G0/G1 phase). Most of the enzymic activity was found in the 15,000 g soluble fraction, with only 4-22% of the activity found in the particulate fraction, depending on the state of cell proliferation. Examination of these cellular fractions by SDS/polyacrylamide-gel electrophoresis and immunoblotting revealed that at confluence endothelial cells have accumulated transglutaminase antigen in their 15,000 g particulate fraction. A series of experiments demonstrated the existence of a latent transglutaminase form in non-proliferating cells, and suggested that this might involve the formation of an inhibitory complex. Treatment of cell lysates and the 15,000 g particulate fraction with high salt concentration showed a significant increase in transglutaminase activity. Mixing experiments using the 100,000 g particulate fraction or purified rat liver transglutaminase on one hand and the cytosolic fraction on the other showed dose-dependent inhibition of the transglutaminase activity of the latter. It is concluded that endothelial cells contain a particulate fraction-residing inhibitor of transglutaminase which interacts via ionic interaction with the enzyme.  相似文献   

20.
The transglutaminase-mediated insertion of putrescine into casein was inhibited competitively by alpha-difluoromethylornithine (alpha-DFMO), an enzyme-activated irreversible inhibitor of ornithine decarboxylase. Preincubation of the amine acceptor (casein) or the enzyme itself with the inhibitor did not affect enzyme activity. Alpha-DFMO is a poorer substrate for transglutaminase (Km = 2.10 mM) than putrescine (Km = 0.17 mM). The inhibitory effect was also found with fibronectin as amine acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号